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Discrete Event System Specification (DEVS) has been widely used to describe hierarchical models of discrete systems. DEVS has al-

so been used successfully to model with Real-Time constraints. In this paper, we introduce a methodology to verify Real-Time DEVS 
models, and describe the methodology by using a case study of a DEVS model of an elevator system. Our methodology applies recent 
advances in theoretical model checking to DEVS models. The methodology also handles the cases where theoretical approach is not feas-
ible to cross the gap between abstract Timed Automata models and the complexity of the DEVS Real-time implementation by empirical 
software engineering methods. The case study is a system composed of an elevator along an elevator controller, and we show how the 
methodology can be applied to a real case like this one in order to improve the quality of such real-time applications. 
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I. INTRODUCTION 

Real-time Systems are very advanced computer systems with 
hardware and software components, which must satisfy "hard" 
timing constraints. In these highly reactive systems, design de-
cisions can lead to catastrophic consequences; hence, not only 
correctness is critical, but also the timeliness of the executing 
tasks. For instance, if we consider an autopilot for an aircraft, 
or a controller for an automated factory, we need to obtain sys-
tem responses within well-defined deadlines. Although ad-
vances in computing technology made possible to build very 
advanced RTS, the software development tasks for this kind of 
systems is still time consuming, error prone, and expensive, 
requiring a difficult and costly testing effort with no guarantee 
for a bug-free software product.  

Software correctness deals with the verification methods to 
ensure that a piece of software is doing what it is designed to 
do. There are many approaches been proposed and used in 
practice to do this task. Testing has been the main methodolo-
gy for verifying software components [1], but this technique 
has its own limitations. In order to guarantee software reliabili-
ty, we need to apply an exhaustive testing to the software 
component, using all possible input combinations. Many tech-
niques have been proposed to enable a practical alternative to 
exhaustive software testing [2]. However, we cannot guarantee 
a full coverage of all possible execution paths in software 
component, thus leaving us with limited confidence in our 
software correctness. 

Formal software analysis use is growing as an alternative, 
as this technique allows full verification of software compo-
nents to be free of errors. In last decades, these techniques 
have matured to be used in some industrial capacity for soft-
ware and hardware correctness verification [3]. Recent trends 
in formal software analysis can be categorized into three broad 
types [3], namely Model Checking, Abstract Interpretation, 
and Deductive Methods. In this paper, we would cover more 
of the Model Checking approach. 

Further, approaches to use formal methods for software 
correctness vary. There are the Correctness-by-Construction 
techniques in which to guarantee the final software implemen-
tation conformance to its requirements the implementation is 
generated directly from the model. This generation is done 

through a series of transformations that are proven formally to 
preserve the desired properties in the original model. The final 
generated code, in this case, does not need an extensive work 
to apply formal analysis to prove its conformance to the origi-
nal model, thus reducing time to market and enabling the aver-
age software engineer to produce formally correct software 
[4][5][6]. Our work is a step in this direction. 

Formal specification techniques still have limited power 
when the complexity of the system scales up. Instead, systems 
engineers have often relied on the use of modeling and simula-
tion (M&S) techniques in order to make system development 
tasks manageable. Construction of system models and their 
analysis through simulation reduces both end costs and risks, 
while enhancing system capabilities and improving the quality 
of the final products. M&S let users experiment with “virtual” 
systems, allowing them to explore changes, and test dynamic 
conditions in a risk-free environment. This is a useful ap-
proach, moreover considering that testing under actual operat-
ing conditions may be impractical and in some cases impossi-
ble. Nevertheless, no practical, automatable approach exists to 
perform the transition that exists between the modeling and the 
development phases, and this often results in model artifacts 
being abandoned, resulting in increased initial costs that 
project managers usually try to avoid. Simultaneously, M&S 
frameworks are not as robust as their formal counterparts are.  

New theoretical advances in model checking allow guaran-
teeing certain properties about models of such systems using a 
formal approach. These techniques can be automated to im-
prove the work of the software engineer. Timed automata (TA) 
theory [7], in particular, has provided many practical results in 
this area. However, there is still a gap between a model that is 
checked as an abstract entity, and the actual code run on a tar-
get platform. Errors could still creep into the final implementa-
tion as the programmer translates requirements captured and 
modeled in TA into code. TA and other formal methods have 
showed promising results are still difficult to apply when the 
complexity of the system under development scales up. 

In this paper, we propose a methodology that would have a 
higher correctness checking reliability of the actual code ex-
ecuting in the real-time system. This is achieved by model-
checking a DEVS model [8] that would run on the target plat-



 

  

form, using a model-based approach in which the user can 
move simulated models to a target platform that will execute 
them in real-time. In order to guarantee the correctness of the 
model, the methodology verifies DEVS models with TA 
theory and tools. TA provides a solid theory and algorithms 
for model checking, and the many existing tools implementing 
these algorithms [9],[10]. DEVS models can be transformed to 
semantically equivalent TA models maintaining its original 
structure and behaviour [11]. The verified DEVS models 
would then execute directly on a Real-time DEVS simulator, 
eliminating the risk of introducing errors in the final system 
implementation on the target platform.  

II.  BACKGROUND 

DEVS was originally defined in the '70s as a discrete-event 
modeling specification mechanism. It was derived from sys-
tems theory, and it allows one to define hierarchical modular 
models that can be easily reused. A real system modeled with 
DEVS is described as a composite of sub models, each of them 
being behavioural (atomic) or structural (coupled). Closure 
under coupling allows coupled models to be integrated to a 
model hierarchy [8]. Each model is defined by a time base, in-
puts, states, outputs, and functions to compute the next states 
and outputs. A DEVS atomic model is formally described by: 

 
M = < X, S, Y, δint, δext, λ, ta > 

 
A DEVS coupled model is composed of several atomic or 

coupled sub models. They are formally defined as: 
 

CM = < X, Y, D, {M i}, {I i}, {Z ij}, select > 
 

CD++ [12] allows defining models following these specifi-
cations. The tool is built as a hierarchy of models, each of 
them related with a simulation entity. CD++ includes a graphi-
cal specification language to enhance interaction with stake-
holders during system specification while having the advan-
tage of allowing the modeler to think about the problem in a 
more abstract way. This notation (named DEVS Graphs), al-
lows defining atomic models’ behavior [13]. Each DEVS 
graph is translated into an analytical definition. DEVS graphs 
can be formally defined as [14]: 

GGAD = < X M , S, Y M , δ int, , δ ext , λ, D > 
 

X M = {(p,v)| p ∈ IPorts, v ∈ X p } set of input ports; 
Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } set of output ports; 
S = B x P(V) states of the model, 
B = { b | b ∈ Bubbles } set of model states. 
V = { (v,n) | v ∈ Variables, n∈ R0 } intermediate state va-

riables of the model and their values. 
Here, δint, δext, λ, and D have the same meaning as in tradi-

tional DEVS models. Each model is defined by a unique iden-
tifier, and it can include a graphical specification. States are 
represented by bubbles including an identifier and a state life-
time. Figure 1 shows a simple atomic model using this notation. 
The model includes three states: A, B and C. Dotted lines 
represent internal transitions, while full lines define external 
transitions.   

 

 
Figure 1: An atomic model defined as a DEVS graph. 

 
This graphical notation has a textual representation asso-

ciated, used for creating simulation models that execute in 
CD++. The internal transitions use the following syntax: 

 
int: source destination [outport!value]*                
                ( { (action;)* } ) 

 
Here, source and destination represent the initial and final 

states associated with the execution of the transition function. 
As the output function should also execute before the internal 
transition, an output value can be associated with the internal 
transition. One or more actions can be triggered during the ex-
ecution of the transition (changing the values of state va-
riables). External transitions are defined as follows: 

 
ext : source destination ( { (action;)* } )?            
             EXPRESSION 

 

In this case, when the expression is true (which includes 
inputs arriving from input ports), the model will change from 
state source to state destination, while also executing one or 
more actions. 

eCD++ is an extension to CD++ that allows real-time ex-
ecution of DEVS models on a Single Board Computer (SBC) 
[15]. It allows also interaction between the simulator and the 
surrounding environment: inputs of eCD++ can be received by 
ports connected to real input devices such as sensors, timers, 
thermometers, or data collected from human interaction, while 
outputs can be sent through output ports connected to devices 
such as motors, transducers, valves, etc.  

In our case study, the target system would be an eCD++ 
platform executing on an embedded system. On that target sys-
tem, the ElevatorController component, as defined later, has 
its own set of timing constraints and would run on the eCD++ 
platform in real-time. 

III.  TIMED AUTOMATA 

Timed automata (TA) [16], [17] is an extension to IO automa-
ta with timing information. Time is being tracked in TA with 



 

  

clocks that hold real numbers and increment their values with 
time advance. Locations in TA could have constraints on the 
time spent in that location, using expressions on clocks that 
called invariants. Transitions from one location to another are 
guarded with clock constraints and synchronization channels. 
Transitions could also have actions to reset values of the 
clocks.  

We introduce a formal definition of TA as defined in [10]: 
- A finite set of real-valued variables C ranged over by x,y, 

etc. standing for clocks and a finite alphabet Σ ranged over by 
a, b, etc. standing for actions. 

- Clock Constraints:  
A clock constraint is a conjunctive formula of atomic con-

straints of the form x ~ n or x-y ~ n for x, y ∈ C , ~ ∈ {<, >,=, 
≤,≥} and n ∈ Ñ, where Ñ is the set of natural numbers. Clock 
constraints will be used as guards for timed automata. B(C) 
denotes the set of clock constraints, ranged over by g. 

(Timed Automaton) A timed automaton Ậ is a tuple 
<N,l0,E,I> where: 

• N is a finite set of locations (or nodes), 
• l0 ∈ N is the initial location, 

• E ⊆ Ν××∑×Β×Ν cC 2)(  is the set of edges 

• I: N→B(C) assigns invariants to locations 

Where: Σ  is set of actions, c2 are selection of clocks to be 
reset to zero. 

We write ll rag ′ → ,,  when ( Elragl ∈′),,,,  

The semantics of a timed automaton is defined as a transi-
tion system where a state or configuration consists of the cur-
rent location and the current values of clocks. There are two 
types of transitions between states. The automaton may either 
delay for some time (a delay transition), or follow an enabled 
edge (an action transition). 

(Operational Semantics) The semantics of a timed auto-
maton is a transition system (also known as a timed transition 
system) where states are pairs <l,u> and transitions are de-
fined by the rules: 

• dulul d +→ ,,  if )(lIu∈  and )()( lIdu ∈+  for a 

non-negative real +∈ Rd  

• ulul a ′′→ ,,  if ][ urugull rag 0,,,, →=′∈′ →  

and )(lIu ′∈′  

 

 
Figure 2: Timed Automaton [11]. 

 
An example of a timed automaton as given in [10] is shown 

in Figure 2. The TA has three states. Off is the initial state. The 
transition out of dim has the a guard 10≤x which enables the 

transition only while clock x value stays less than 10 time 
units, when a synchronization signal arrives on channel press. 
States could also have clock constraints called invariants. In 
this case, time is allowed to pass in a state while the clock val-
ues satisfy the invariant. Once the invariant is not satisfied, the 
automaton would leave that state and enable a transition to 
another state that clock values would satisfy its invariant. 

TA are suitable for modeling discrete systems with conti-
nuous time. These systems could be composed of single TA 
model, or multiple models that interact together. The latter 
case is called network of TA.  

TA model checking for finite state machines [18], [19], 
[20] has been extended by employing symbolic model check-
ing techniques [21],[22] to build a finite reachability graph 
with continuous time. However, state explosion problem still 
limits the size of actual problems that can be solved. Recent 
techniques to reduce this problem have been proposed and 
these results were implemented in a number of tools for TA 
model checking with success to check models of increasing 
sizes. One of these tools is UPPAAL [9],[10] which has ex-
tended TA with integer variables, urgent channels and user de-
fined functions. These extensions increase the conciseness of 
the model, but not the expressiveness power as shown in [23]. 
UPPAAL uses a subset of CTL (Computation Tree Logic) [22] 
to specify queries for properties in the TA model. 

In our methodology, if UPPAAL (or any other model 
checker) faces a problem of state explosion, and no answers 
can be obtained in finite time, the user can switch to simulated 
mode and exhaustively test the models using DEVS simula-
tion. Subcomponents can be verified using TA model check-
ers, improving the overall quality of the system. 

IV. A CASE STUDY: AN ELEVATOR SYSTEM 

We will show the effective use of TA model checking tech-
niques for verification of DEVS Graphs models, through a 
concrete example. This case study shows an Elevator system 
composed of an elevator and a computer controller modeled in 
DEVS Graphs notation with a model that abstracts the elevator 
and controller behaviors. This abstraction is necessary to study 
only properties of concern and to simplify the modeling task.  

A. DEVS Model definition and Simulation 

 

 
Figure 3: Elevator Model in DEVS Graph notation. 

 
The elevator model shown in Figure 3 represents the differ-

ent states of an elevator movement and transitions between 



 

  

these states. This is an abstract model of the elevator where 
some details like door operation, floor display, etc. have been 
ignored (as we only interested to control the elevator move-
ment with our controller). The elevator starts in stopped state 
and waits for controller commands to move (to satisfy a button 
request from the user). The controller takes the decisions for 
direction, start and stop of the motors. Figure 4 shows the trans-
lation of this DEVS Graph model to a textual definition. 

 
[elevator] 
in: mover  
out: stop  
state: stopped GoingDown SlowingDown aux rising StopUp  
initial : stopped 
ext: stopped rising Value(mover)?2  
ext: rising StopUp Value(mover)?0  
ext: stopped aux Value(mover)?0  
ext: GoingDown SlowingDown Value(mover)?0  
int: aux stopped  
int: SlowingDown stopped stop!1  
int: StopUp stopped stop!1  
ext: stopped GoingDown Value(mover)?1  
stopped:00:00:1000:00        GoingDown:00:00:1000:00 
SlowingDown:00:00:1:00       aux:00:00:00:00      
rising:00:00:1000:00         StopUp:00:00:1:00 

Figure 4: Elevator CD++ model. 

 
Input and output ports are specified with the keywords in, 

and out respectively. The State keyword defines the list of 
states on the model, with initial as the initial state. External 
transitions are marked by keyword ext. Internal transitions are 
marked by keyword int. For both transitions we define source/ 
destination states, input ports/values for external transitions, 
and output ports/values for internal transitions. The lifetimes 
for each state are represented beside the state name. 
 

  
Figure 5: Elevator Controller Model in DEVS Graphs notation 

 
The DEVS Graph model of the elevator Controller is shown 

in Figure 5. In this model, we abstract the behavior of the con-
troller to being in one of possible 6 states. These states 
represent the elevator in regards to its movement direction and 
its acceleration. The states are StdByStop that represents the 
elevator in a complete stop and ready to move for any coming 
requests, Moving in which the controller makes a decision to 
move the elevator based on current floor and the button 
pressed floor, StdByMov corresponds to the elevator moving 
to the desired floor and the controller in that state receiving 
sensor signals to decide when to stop the elevator, aux which 
serve as a dummy state with internal transition that is executed 
immediately after reaching that state, the state purpose is to 
enable the test of the sensor value on the external transition to 

it with the function equal(sensor,floor), Stopped which corres-
ponds to the controller deciding to send a signal to the elevator 
to slow in preparation to stop, and Stopping corresponds to the 
controller waiting for the elevator to get into complete stop 
and send a stop signal to the controller. 

 In this model, the controller would be in StdByStop state 
waiting for a button request to move. Whenever it receives the 
button request, it would trigger an external transition, and 
compare the button floor to the cur_floor of the elevator. 
Based on this comparison, the controller would determine the 
direction in which the elevator should travel to, and stores this 
info into the direction variable. The controller then reaches 
Moving state that has a lifetime of zero time units. Therefore, 
an output function is executed to send the direction informa-
tion through the port move to the elevator model, and an in-
stantaneous (with no time advancing in Moving state) internal 
transition would be triggered to change the state into StdBy-
Mov state. The controller then decides to change to stopped 
state if the sensor reading matches the desired floor; otherwise 
it would loop between aux state and StdByMov states as shown 
in the figure. The corresponding CD++ model textual specifi-
cation is shown in Figure 6. 

 
[controller] 
in: button stop sensor  
out: move  
var: floor cur_floor direction  
state: stopping stdbyStop moving Stopped stdbyMov aux1  
initial : stdbyStop 
int: Stopped stopping move!0 
ext: stopping stdbyStop Value(stop)?1  
ext: stdbyStop moving Equal(button,cur_floor)?0 {floor =  
      button; direction = compare(cur_floor,floor,2,0,1);} 
int: moving stdbyMov move!direction  
int: aux1 stdbyMov  
ext: stdbyMov aux1 Equal(sensor,floor)?0 {cur_floor=sensor;} 
ext: stdbyMov Stopped Equal(sensor,floor)?1 {cur_floor =  

        sensor;} 
stopping:00:00:00:00            stdbyStop:00:00:1000:00 
moving:00:00:00:00              Stopped:00:00:00:00 
stdbyMov:00:00:1000:00          aux1:00:00:00:00 
floor:0             cur_floor:0        direction:0 

Figure 6: Controller CD++ model. 
 

Figure 7 shows the coupled model definition for the total 
system composed of the Elevator and the Controller. In the 
top component, these two components are defined, with input 
ports to the top component button and sensor. These ports 
are linked to the input ports of controller in lines 6 and 7.  

  
1. components : elevator@ggad controller@ggad  
2. in : button sensor  
3. Link : move@controller move@elevator 
4. Link : stop@elevator stop@controller 
5. Link : button button@controller 
6. Link : sensor sensor@controller 
7. [elevator] 
8. source : elevator.CDD 
9. [controller] 
10. source : controller.cdd 
Figure 7: Elevator coupled model definition. 

 
The coupling between the elevator and Controller atomic 

models is shown on lines 4 and 5. Lines 8 to11 specifies the 
files names for the atomic components. A DEVS graph 
representing the coupled model is also shown in Figure 8. This 
graph shows the atomic models of the elevator and controller, 
input ports to the coupled model, and links between all com-
ponents. 



 

  

 

 
Figure 8: The elevator-Controller coupled model graph 

 
In Figure 9, we show a test case scenario for the elevator 

top model is shown. This file would direct the simulation, and 
its events would be sent to the model top component as de-
fined in Figure 7. This top component would direct the input to 
the elevator controller as specified in the model definition. In 
this file, third floor button is pressed at 5 time units. The 
floorSensor sends signals to the elevator controller with floors 
visited 1, 2, and 3 at times 10, 14, and 18 respectively. At time 
27, first floor button is pressed and then floor sensor sends 
signals at designated times as shown in the figure. 

 
00:00:05:00 button3 
00:00:10:00 floorSensor1 
00:00:14:00 floorSensor2 
00:00:18:00 floorSensor3 
00:00:27:00 button1 
00:00:32:00 floorSensor2 
00:00:36:00 floorSensor1 

Figure 9: Elevator Simulation event file 
 

In Figure 10, simulation results are shown for the elevator 
controller. Initially, the controller is at stdbystop state, with 
all variables initialized to zeros. At 5 time units, the controller 
receives the third floor button request as specified in the input 
event file shown in Figure 9. This input causes the controller to 
execute the external transition and change its state from 
stdbystop to moving, with variable values as shown on the 
third line from top. At time 5, output function executes sending 
2 to move port, then internal transition executes to reach the 
state stdbymov. The simulation continues with inputs at lines 
marked with question mark “?”, Output with “O”, Internal 
transitions with “I”, and External transitions with “E” letters. 

 
C 00:00:00:000 : stdbystop , (direction=0) (floor=0)  
                             (cur_floor=0) 
? 00:00:05:000 : button, 3 
E 00:00:05:000 : stdbystop , moving(direction=2) (floor=3)  
                            (cur_floor=0) 
O 00:00:05:000 : move, 2 
I 00:00:05:000 : moving, stdbymov (direction=2) (floor=3)  
                             (cur_floor=0) 
? 00:00:10:000 : floorSensor, 1 
E 00:00:10:000 : stdbymov , aux1 (direction=2) (floor=3)  

(cur_floor=1) 
I 00:00:10:000 : aux1, stdbymov (direction=2) (floor=3)  

(cur_floor=1) 
? 00:00:14:000 : floorSensor, 2 
E 00:00:14:000 : stdbymov , aux1 (direction=2) (floor=3)  

(cur_floor=2) 
I 00:00:14:000 : aux1 , stdbymov (direction=2) (floor=3)  

(cur_floor=2) 
? 00:00:18:000 : floorSensor, 3 
E 00:00:18:000 : stdbymov , stopped (direction=2) (floor=3)  

(cur_floor=3) 
O 00:00:18:000 : move, 0 
I 00:00:18:000 : stopped , stopping(direction=2) (floor=3)  

(cur_floor=3) 
? 00:00:19:000 : stop, 1 
E 00:00:19:000 : stopping, stdbystop (direction=2) (floor=3)  

(cur_floor=3) 
? 00:00:27:000 : button, 1 
E 00:00:27:000 : stdbystop , moving(direction=1) (floor=1)  

(cur_floor=3) 
O 00:00:27:000 : move, 1 

I 00:00:27:000 : moving, stdbymov (direction=1) (floor=1)  
(cur_floor=3) 

? 00:00:32:000 : floorSensor, 2 
E 00:00:32:000 : stdbymov , aux1 (direction=1) (floor=1)  

(cur_floor=2) 
I 00:00:32:000 : aux1 , stdbymov (direction=1) (floor=1)  

(cur_floor=2) 
? 00:00:36:000 : floorSensor, 1 
E 00:00:36:000 : stdbymov , stopped (direction=1) (floor=1)  

(cur_floor=1) 
O 00:00:36:000 : move, 0 
I 00:00:36:000 : stopped , stopping(direction=1) (floor=1)  

(cur_floor=1) 
? 00:00:37:000 : stop, 1 
E 00:00:37:000 : stopping, stdbystop (direction=1) (floor=1)  

(cur_floor=1) 

Figure 10: Controller Simulation output. 
 

Figure 11 shows the elevator simulation results with receiv-
ing and sending input/output from the controller.  

The character in the first column in the simulation results 
represents the following: 

C: The initial state. 
?: Input received by the elevator atomic model. 
E: External transition executed by the elevator atomic 

model, that is triggered by the reception of an event. 
O: Output caused by invoking the output function. 
I: Internal transition executed. 
To describe the simulation results in Figure 11, the elevator 

simulation starts at stopped state at time 00:00. At time 5:00 
the elevator receives an input on move port with value 2. This 
causes the elevator to change state to rising and wait there 
for input 0 on move port. At time 18:00, the required input ar-
rives and the elevator changes to state StopUp, which its life-
time equals to 1 time units. This state represents the elevator 
braking in the upward direction preparing to stop. At 19:00, 
the elevator execute the output function and sends value of 1 
on the output port stop, then changes to stopped state. The 
simulation continues until the model reaches stopped state 
again in last line. 

C 00:00:00:000 : stopped ,  
? 00:00:05:000 : move , 2 
E 00:00:05:000 : stopped , rising 
? 00:00:18:000 : move , 0 
E 00:00:18:000 : rising , StopUp 
O 00:00:19:000 : stop , 1 
I 00:00:19:000 : StopUp , stopped 
? 00:00:27:000 : move , 1 
E 00:00:27:000 : stopped , dropping 
? 00:00:36:000 : move , 0 
E 00:00:36:000 : dropping , SlowDown  
O 00:00:37:000 : stop , 1 
I 00:00:37:000 : SlowDown , stopped 

Figure 11: Elevator simulation results 

B. Translating the Elevator DEVS Graph to Timed Automata 

In order to formally verify the operation of our models and 
hence our controller implementation on ECD++ platform, we 
converted the previous DEVS models to equivalent TA that we 
can check it with UPPAAL model checker. DEVS graphs no-
tation matches the definition on TCDEVS as defined in [11]. 
TCDEVS is a subset of DEVS formalism such that TCDEVS 
models are deterministic. In that work, it shown that TCDEVS 
models can be translated into equivalent TA models that main-
tain the same behavior and properties. By applying this trans-
lation method to our DEVS models, we obtain the TA models 
shown in Figure 12 and Figure 13. 

Figure 12 shows the elevator equivalent TA model with 
clock constraints in locations that represent the time-life values 
in corresponding DEVS model. Values sent through DEVS 



 

  

ports are modeled with shared variables in UPPAAL, sending 
and receiving messages in DEVS are modeled with channel 
synchronization on the corresponding transitions in the TA 
model. Each state in the DEVS model has a corresponding one 
with the same name in the TA model. Only one clock variable 
is sufficient for each TA to model an atomic DEVS graph 
model. This clock is reset to zero whenever the automaton en-
ters a state. In Figure 12, x is the clock variable, and at each 
state a constraint with x is formed to limit the time spend in 
that state to the state lifetime as defined in the DEVS model. 
An internal transition in DEVS model is represented with tran-
sitions in TA with output synchronization channel and assigns 
the output value to a shared variable. External transitions are 
represented with transition with input synchronization channel 
and shared variable in its guard. For example the transition 
from StopUp to Rising is synchronized on move channel, 
and is enabled only if value of the shared variable direction 
equals to zero. 

 
Figure 12: Elevator TA model in UPPAAL. 

 
Figure 13 shows the translated TA model from the DEVS 

controller model. We used the same transformations as in the 
elevator model, however in this one, we converted the DEVS 
function compare() to an equivalent user defined function in 
UPPAAL. This function is used on the corresponding transi-
tions in TA model as its equivalent in the DEVS model. 

Figure 13: TA Controller model in UPPAAL. 

In order to model DEVS states with zero lifetimes, i.e. 
once this state is reached, its output function is executed, then 
an internal transition happens out of that state, we used com-

mitted states as defined in UPPAAL timed automata. Time 
does not pass in a committed state, and once we reach it in TA 
model, a transition out of that state is enabled immediately. 
Example of a committed state is Aux state in Figure 12.  

In order to model input to the system as per the event file 
shown for the DEVS model in Figure 9, we construct an auto-
maton that would send the button and sensor inputs to the con-
troller as in Figure 14 This automaton is necessary to make the 
TA system under study a closed model. In order for model 
checking techniques to be able to verify desired properties, 
they must work on closed systems as model checking would 
explore all possible system transitions to be able to determine 
if the desired property is met or not. Therefore, a good model-
ing of the system environment is also necessary to completely 
check all possible system behaviors for all expected environ-
ment inputs. 

The environment modeled in Figure 14 is responsible for 
sending button and sensor events to the controller. It starts at 
S1 state, after staying in this state for 5 time units, it sets vari-
able button to 3, then synchronizes with controller TA on 
channel buttonc. Again, waits in state S2 until its clock y 
reaches 10 time units, sets sensor to 1, and synchronizes with 
the controller on channel sensorc. This process continues for 
the desired inputs sequences to the controller, and then resets 
the clock and restarts again at S1. 

 
Figure 14: Environment inputs (Button and Sensor). 
 

After translating our DEVS model to an equivalent TA 
model, we can use model checking to answer questions about 
our DEVS model behavior that otherwise would have needed 
to fully simulate all possible executions of the DEVS model to 
get the answers.  

Some of the important questions would be: 
a. Does our DEVS model execution stop at one point without 
being able to progress (having a deadlock)? 
b. If no deadlocks are found in the DEVS model, is it always 
guaranteed whenever a user pushes a floor button that the ele-
vator would reach that floor (normal operation as desired for 
the elevator system)? 
c. In case the elevator eventually reaches the requested floor, is 
there a time upper bound between the request and the arrival 



 

  

of the elevator that our model would always guarantee to hap-
pen? 

In order to answer these questions, we formulated these 
questions into formal queries to the TA model. 

For the first question, we applied the UPPAAL verifier to 
our model to check for any deadlocks that maybe present in 
the elevator model To check for that failure, we had formu-
lated a simple query to UPPAAL model. It is expressed in 
UPPAAL CTL language as:  

A[] not deadlock 
After running the checker, it shows that this property is sa-

tisfied, i.e. there is no deadlock in the DEVS model. 
UPPAAL version 4.0.6 (rev. 2986), March 2007 -- 
server. 
A[] not deadlock 
Property is satisfied. 

Figure 15: Elevator Verification Results in UPPAAL 
 

To answer the second question, we need to check for the 
liveness property, i.e. something would eventually happen. In 
our case, for the proper operation of the controller within the 
coupled system, we are interested to check if by pressing a cer-
tain floor button, the elevator would eventually reach that 
floor. For example, if the user presses the 3rd floor button, the 
elevator would eventually reach the 3rd floor. This property is 
expressed in CTL as: 
button == 3 --> ElevatorController.cur_floor == 3 

i.e. whenever a user input for the third floor button hap-
pens, the cur_floor variable in the ElevatorController would 
eventually reach that floor. This property was satisfied as well 
in UPPAAL model checker for the given model. However, for 
a query as: 
button == 3 --> ElevatorController.cur_floor == 4 

The property is not satisfied as we expect. By pressing 3rd 
floor button, given the elevator initially stopped at 1st floor, 
there is no way the elevator would reach the 4th floor. 

To answer the third question, i.e. to know if the elevator 
would reach the requested 3rd floor within some bounded time. 
We extend the model for bounded time checking by adding 
boolean variable b, and a global clock z as shown on the Ele-
vator model. The variable b would be set to true as long the 
elevator starts traveling and until it reaches the Stopped state 
again. Therefore, by checking the accumulated time while b is 
true, it would give us the property we need to check. Then, the 
property would be expressed with the following query: 

A[] ( b imply z < 27 ) which is satisfied. However, 
the query  A[] ( b imply z < 26 )  is not satisfied. 

This shows that the elevator would reach the 3rd floor after 
requested there by no less than 26 time units, but guaranteed to 
be there at 27 time units or more. More complex queries to 
check for more properties could also be formulated and veri-
fied by UPPAAL in case that we have a more complex DEVS 
model. 

UPPAAL tool can also give a trace to help the designer get 
an insight into the system working details. A trace is shown in 
Figure 16. In this trace the system starts at initial states for all 
three components, and then progresses. The composed system 
state is shown as (Stopped,StdByStop,S1), and transi-
tions with synchronization is shown as but-
tonc:User_sensor_input --> ElevatorController. 

That means that User_sensor_input synchronizes on but-
tonc channel with the ElevatorController. The new state 
resulting from this transition is shown below the transition. 

 
(Stopped,StdByStop,S1) 
buttonc: User_sensor_input --> ElevatorController 

(Stopped,Moving,S1) 
move: ElevatorController --> Elevator 

(Rising,StdByMov,S1) 
sensorc: User_sensor_input --> ElevatorController 

(Rising,Aux,S1) 
ElevatorController  (Rising,StdByMov,S3) 
sensorc: User_sensor_input --> ElevatorController 

(Rising,Aux1,S4) 
ElevatorController (Rising,StdByMov,S4) 
sensorc: User_sensor_input --> ElevatorController 

(Rising,Aux1,S5) 
ElevatorController (Rising,StdByMov,S5) 
ElevatorController (Rising,Stopped,S5) 
move: ElevatorController --> Elevator 

(StopUp,Stopped,S5) 
stop: Elevator --> ElevatorController 

(Stopped,StdByStop,S5) 
buttonc: User_sensor_input --> ElevatorController 

(Stopped,Moving,S6) 
move: ElevatorController --> Elevator 

(GoingDown,StdByMov,S6) 
sensorc: User_sensor_input --> ElevatorController 
  (GoingDown,Aux1,S7) 
ElevatorController (GoingDown,StdByMov,S7) 
sensorc: User_sensor_input --> ElevatorController 

(GoingDown,Aux1,S1) 
ElevatorController (GoingDown,StdByMov,S1) 
ElevatorController (GoingDown,Stopped,S1) 
move: ElevatorController --> Elevator 

(SlowingDown,Stopped,S1) 
stop: Elevator --> ElevatorController 

(Stopped,StdByStop,S1) 
Figure 16: Elevator TA Simulation Results in UPPAAL. 
 

This trace result shows the composed state of the model, 
i.e. Elevator, Controller and User_sensor_input composed 
state. The composed state is represented by a tuple (elevatorS-
tate, ControllerState, User_Sensor_inputState). Therefore, to 
compare this UPPAAL trace to the previous DEVS simulation, 
we compare the component trace with its corresponding DEVS 
simulation output, as DEVS simulation output is stored for 
each component individually. For example, the elevator UP-
PAAL trace results are in the left side of the tuple. By extract-
ing the elevator trace (Stopped, Rising, StopUp, 
Stopped, GoingDown, SlowingDown, Stopped), we 
find it matching the same corresponding states in the simula-
tion results shown in Figure 11 (stopped,rising, StopUp, 
stopped, dropping, SlowDown, stopped. In both of 
these traces, the elevator starts at its initial state Stopped, and 
then rises to reach third floor as 3rd floor button is pressed, un-
til it stops there and stays in stopped state waiting for a next 
request. When first floor button is pressed, the elevator moves 
down until it reaches first floor and stops there in stopped 
state, ready for next button request. The same comparison can 
be done to the controller trace and to see it matches the DEVS 
simulation as shown in Figure 10. 

V. CONCLUSION AND FUTURE WORK. 

We showed an effective methodology for Real-Time sys-
tems development using DEVS modeling and simulation tools 
combined with the power of formal model checking tool as 
timed Automata. In this methodology, we showed translation 



 

  

of DEVS Graph to TA models details, and how to satisfy the 
requirement to have a closed system be able to fully check 
DEVS models.  

In order to use Timed automata to verify DEVS models, 
we need an accurate modeling of the environment in which the 
modeled system would work and interact. This is not always a 
straightforward task, as many assumptions may be needed to 
model the environment. Future work would be needed to de-
duce patterns for modeling complex environment behaviors to 
be able to completely check DEVS models. 

Validating DEVS models formally with TA model check-
ing is paving the road for solving real-time predictability for 
software systems. DEVS models are executable directly, with-
out the need for compilation, on eCD++ embedded platform in 
a real-time. With this advantage, any formally validated DEVS 
model would be guaranteed to execute exactly as predicted by 
the validation, as no human intervention comes between the 
checked model and the executable system. This advantage 
would serve not only simulation community, but also real-time 
software community as well, as DEVS can be used to model 
controllers that would be simulated, formally validated and 
then deployed on target platform.  

Our approach to use model checking to verify DEVS mod-
els is limited with the same limitations imposed on TA model 
checking, mainly because of state explosion problem. This 
would limit the methodology to small and medium size DEVS 
models. However, many real-life applications fall into these 
boundaries. 

 We see our methodology scaling up to include more com-
plex and general DEVS models that may represent a challenge 
for model checking tools because of the state explosion prob-
lem. In this case, other decomposition and abstraction tech-
niques would be applied on the problem on hand. These tech-
niques would simplify the generated TA models to the point 
that it is practical for model checking.  

We intend to expand this methodology to enable more effi-
cient methodology for building DEVS components. In this ex-
panded methodology, the system analyst would concentrate on 
system modeling tasks for the system on hand, for example the 
elevator, and the surrounding environment. This model would 
then be verified and validated by the designer to make sure it 
captures all necessary system and environment details. The 
methodology would use existing formal methods to generate 
DEVS component (for example the elevator controller) that in-
teracts with the modeled system to achieve the desired overall 
system properties, i.e. lack of deadlocks, safety, liveness, and 
bounded-time-response. This would automate the building of a 
considerable part of final coupled system, and eliminate the 
need to formally check the generated component, as it would 
be correct by the correct-by-construction technique.  
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