

Verification of Real-Time DEVS Models

Hesham Saadawi 1, Gabriel Wainer2

1School of Computer Science, Carleton University, Ottawa, ON . K1S 5B6, Canada, hsaadawi@connect.carleton.ca
2 Dept. of Systems and Computer Engineering, Carleton University, Ottawa, ON . K1S 5B6, Canada, gwainer@sce.carleton.ca

Discrete Event System Specification (DEVS) has been widely used to describe hierarchical models of discrete systems. DEVS has al-

so been used successfully to model with Real-Time constraints. In this paper, we introduce a methodology to verify Real-Time DEVS
models, and describe the methodology by using a case study of a DEVS model of an elevator system. Our methodology applies recent
advances in theoretical model checking to DEVS models. The methodology also handles the cases where theoretical approach is not feas-
ible to cross the gap between abstract Timed Automata models and the complexity of the DEVS Real-time implementation by empirical
software engineering methods. The case study is a system composed of an elevator along an elevator controller, and we show how the
methodology can be applied to a real case like this one in order to improve the quality of such real-time applications.

Keywords: DEVS, Formal methods verification, Real-Time software, Timed automata.

I. INTRODUCTION

Real-time Systems are very advanced computer systems with
hardware and software components, which must satisfy "hard"
timing constraints. In these highly reactive systems, design de-
cisions can lead to catastrophic consequences; hence, not only
correctness is critical, but also the timeliness of the executing
tasks. For instance, if we consider an autopilot for an aircraft,
or a controller for an automated factory, we need to obtain sys-
tem responses within well-defined deadlines. Although ad-
vances in computing technology made possible to build very
advanced RTS, the software development tasks for this kind of
systems is still time consuming, error prone, and expensive,
requiring a difficult and costly testing effort with no guarantee
for a bug-free software product.

Software correctness deals with the verification methods to
ensure that a piece of software is doing what it is designed to
do. There are many approaches been proposed and used in
practice to do this task. Testing has been the main methodolo-
gy for verifying software components [1], but this technique
has its own limitations. In order to guarantee software reliabili-
ty, we need to apply an exhaustive testing to the software
component, using all possible input combinations. Many tech-
niques have been proposed to enable a practical alternative to
exhaustive software testing [2]. However, we cannot guarantee
a full coverage of all possible execution paths in software
component, thus leaving us with limited confidence in our
software correctness.

Formal software analysis use is growing as an alternative,
as this technique allows full verification of software compo-
nents to be free of errors. In last decades, these techniques
have matured to be used in some industrial capacity for soft-
ware and hardware correctness verification [3]. Recent trends
in formal software analysis can be categorized into three broad
types [3], namely Model Checking, Abstract Interpretation,
and Deductive Methods. In this paper, we would cover more
of the Model Checking approach.

Further, approaches to use formal methods for software
correctness vary. There are the Correctness-by-Construction
techniques in which to guarantee the final software implemen-
tation conformance to its requirements the implementation is
generated directly from the model. This generation is done

through a series of transformations that are proven formally to
preserve the desired properties in the original model. The final
generated code, in this case, does not need an extensive work
to apply formal analysis to prove its conformance to the origi-
nal model, thus reducing time to market and enabling the aver-
age software engineer to produce formally correct software
[4][5][6]. Our work is a step in this direction.

Formal specification techniques still have limited power
when the complexity of the system scales up. Instead, systems
engineers have often relied on the use of modeling and simula-
tion (M&S) techniques in order to make system development
tasks manageable. Construction of system models and their
analysis through simulation reduces both end costs and risks,
while enhancing system capabilities and improving the quality
of the final products. M&S let users experiment with “virtual”
systems, allowing them to explore changes, and test dynamic
conditions in a risk-free environment. This is a useful ap-
proach, moreover considering that testing under actual operat-
ing conditions may be impractical and in some cases impossi-
ble. Nevertheless, no practical, automatable approach exists to
perform the transition that exists between the modeling and the
development phases, and this often results in model artifacts
being abandoned, resulting in increased initial costs that
project managers usually try to avoid. Simultaneously, M&S
frameworks are not as robust as their formal counterparts are.

New theoretical advances in model checking allow guaran-
teeing certain properties about models of such systems using a
formal approach. These techniques can be automated to im-
prove the work of the software engineer. Timed automata (TA)
theory [7], in particular, has provided many practical results in
this area. However, there is still a gap between a model that is
checked as an abstract entity, and the actual code run on a tar-
get platform. Errors could still creep into the final implementa-
tion as the programmer translates requirements captured and
modeled in TA into code. TA and other formal methods have
showed promising results are still difficult to apply when the
complexity of the system under development scales up.

In this paper, we propose a methodology that would have a
higher correctness checking reliability of the actual code ex-
ecuting in the real-time system. This is achieved by model-
checking a DEVS model [8] that would run on the target plat-

form, using a model-based approach in which the user can
move simulated models to a target platform that will execute
them in real-time. In order to guarantee the correctness of the
model, the methodology verifies DEVS models with TA
theory and tools. TA provides a solid theory and algorithms
for model checking, and the many existing tools implementing
these algorithms [9],[10]. DEVS models can be transformed to
semantically equivalent TA models maintaining its original
structure and behaviour [11]. The verified DEVS models
would then execute directly on a Real-time DEVS simulator,
eliminating the risk of introducing errors in the final system
implementation on the target platform.

II. BACKGROUND

DEVS was originally defined in the '70s as a discrete-event
modeling specification mechanism. It was derived from sys-
tems theory, and it allows one to define hierarchical modular
models that can be easily reused. A real system modeled with
DEVS is described as a composite of sub models, each of them
being behavioural (atomic) or structural (coupled). Closure
under coupling allows coupled models to be integrated to a
model hierarchy [8]. Each model is defined by a time base, in-
puts, states, outputs, and functions to compute the next states
and outputs. A DEVS atomic model is formally described by:

M = < X, S, Y, δint, δext, λ, ta >

A DEVS coupled model is composed of several atomic or

coupled sub models. They are formally defined as:

CM = < X, Y, D, {M i}, {I i}, {Z ij}, select >

CD++ [12] allows defining models following these specifi-
cations. The tool is built as a hierarchy of models, each of
them related with a simulation entity. CD++ includes a graphi-
cal specification language to enhance interaction with stake-
holders during system specification while having the advan-
tage of allowing the modeler to think about the problem in a
more abstract way. This notation (named DEVS Graphs), al-
lows defining atomic models’ behavior [13]. Each DEVS
graph is translated into an analytical definition. DEVS graphs
can be formally defined as [14]:

GGAD = < X M , S, Y M , δ int, , δ ext , λ, D >

X M = {(p,v)| p ∈ IPorts, v ∈ X p } set of input ports;
Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } set of output ports;
S = B x P(V) states of the model,
B = { b | b ∈ Bubbles } set of model states.
V = { (v,n) | v ∈ Variables, n∈ R0 } intermediate state va-

riables of the model and their values.
Here, δint, δext, λ, and D have the same meaning as in tradi-

tional DEVS models. Each model is defined by a unique iden-
tifier, and it can include a graphical specification. States are
represented by bubbles including an identifier and a state life-
time. Figure 1 shows a simple atomic model using this notation.
The model includes three states: A, B and C. Dotted lines
represent internal transitions, while full lines define external
transitions.

Figure 1: An atomic model defined as a DEVS graph.

This graphical notation has a textual representation asso-

ciated, used for creating simulation models that execute in
CD++. The internal transitions use the following syntax:

int: source destination [outport!value]*
 ({ (action;)* })

Here, source and destination represent the initial and final

states associated with the execution of the transition function.
As the output function should also execute before the internal
transition, an output value can be associated with the internal
transition. One or more actions can be triggered during the ex-
ecution of the transition (changing the values of state va-
riables). External transitions are defined as follows:

ext : source destination ({ (action;)* })?
 EXPRESSION

In this case, when the expression is true (which includes
inputs arriving from input ports), the model will change from
state source to state destination, while also executing one or
more actions.

eCD++ is an extension to CD++ that allows real-time ex-
ecution of DEVS models on a Single Board Computer (SBC)
[15]. It allows also interaction between the simulator and the
surrounding environment: inputs of eCD++ can be received by
ports connected to real input devices such as sensors, timers,
thermometers, or data collected from human interaction, while
outputs can be sent through output ports connected to devices
such as motors, transducers, valves, etc.

In our case study, the target system would be an eCD++
platform executing on an embedded system. On that target sys-
tem, the ElevatorController component, as defined later, has
its own set of timing constraints and would run on the eCD++
platform in real-time.

III. TIMED AUTOMATA

Timed automata (TA) [16], [17] is an extension to IO automa-
ta with timing information. Time is being tracked in TA with

clocks that hold real numbers and increment their values with
time advance. Locations in TA could have constraints on the
time spent in that location, using expressions on clocks that
called invariants. Transitions from one location to another are
guarded with clock constraints and synchronization channels.
Transitions could also have actions to reset values of the
clocks.

We introduce a formal definition of TA as defined in [10]:
- A finite set of real-valued variables C ranged over by x,y,

etc. standing for clocks and a finite alphabet Σ ranged over by
a, b, etc. standing for actions.

- Clock Constraints:
A clock constraint is a conjunctive formula of atomic con-

straints of the form x ~ n or x-y ~ n for x, y ∈ C , ~ ∈ {<, >,=,
≤,≥} and n ∈ Ñ, where Ñ is the set of natural numbers. Clock
constraints will be used as guards for timed automata. B(C)
denotes the set of clock constraints, ranged over by g.

(Timed Automaton) A timed automaton Ậ is a tuple
<N,l0,E,I> where:

• N is a finite set of locations (or nodes),
• l0 ∈ N is the initial location,

• E ⊆ Ν××∑×Β×Ν cC 2)(is the set of edges

• I: N→B(C) assigns invariants to locations

Where: Σ is set of actions, c2 are selection of clocks to be
reset to zero.

We write ll rag ′ → ,, when (Elragl ∈′),,,,

The semantics of a timed automaton is defined as a transi-
tion system where a state or configuration consists of the cur-
rent location and the current values of clocks. There are two
types of transitions between states. The automaton may either
delay for some time (a delay transition), or follow an enabled
edge (an action transition).

(Operational Semantics) The semantics of a timed auto-
maton is a transition system (also known as a timed transition
system) where states are pairs <l,u> and transitions are de-
fined by the rules:

• dulul d +→ ,, if)(lIu∈ and)()(lIdu ∈+ for a

non-negative real +∈ Rd

• ulul a ′′→ ,, if][urugull rag 0,,,, →=′∈′ →

and)(lIu ′∈′

Figure 2: Timed Automaton [11].

An example of a timed automaton as given in [10] is shown

in Figure 2. The TA has three states. Off is the initial state. The
transition out of dim has the a guard 10≤x which enables the

transition only while clock x value stays less than 10 time
units, when a synchronization signal arrives on channel press.
States could also have clock constraints called invariants. In
this case, time is allowed to pass in a state while the clock val-
ues satisfy the invariant. Once the invariant is not satisfied, the
automaton would leave that state and enable a transition to
another state that clock values would satisfy its invariant.

TA are suitable for modeling discrete systems with conti-
nuous time. These systems could be composed of single TA
model, or multiple models that interact together. The latter
case is called network of TA.

TA model checking for finite state machines [18], [19],
[20] has been extended by employing symbolic model check-
ing techniques [21],[22] to build a finite reachability graph
with continuous time. However, state explosion problem still
limits the size of actual problems that can be solved. Recent
techniques to reduce this problem have been proposed and
these results were implemented in a number of tools for TA
model checking with success to check models of increasing
sizes. One of these tools is UPPAAL [9],[10] which has ex-
tended TA with integer variables, urgent channels and user de-
fined functions. These extensions increase the conciseness of
the model, but not the expressiveness power as shown in [23].
UPPAAL uses a subset of CTL (Computation Tree Logic) [22]
to specify queries for properties in the TA model.

In our methodology, if UPPAAL (or any other model
checker) faces a problem of state explosion, and no answers
can be obtained in finite time, the user can switch to simulated
mode and exhaustively test the models using DEVS simula-
tion. Subcomponents can be verified using TA model check-
ers, improving the overall quality of the system.

IV. A CASE STUDY: AN ELEVATOR SYSTEM

We will show the effective use of TA model checking tech-
niques for verification of DEVS Graphs models, through a
concrete example. This case study shows an Elevator system
composed of an elevator and a computer controller modeled in
DEVS Graphs notation with a model that abstracts the elevator
and controller behaviors. This abstraction is necessary to study
only properties of concern and to simplify the modeling task.

A. DEVS Model definition and Simulation

Figure 3: Elevator Model in DEVS Graph notation.

The elevator model shown in Figure 3 represents the differ-

ent states of an elevator movement and transitions between

these states. This is an abstract model of the elevator where
some details like door operation, floor display, etc. have been
ignored (as we only interested to control the elevator move-
ment with our controller). The elevator starts in stopped state
and waits for controller commands to move (to satisfy a button
request from the user). The controller takes the decisions for
direction, start and stop of the motors. Figure 4 shows the trans-
lation of this DEVS Graph model to a textual definition.

[elevator]
in: mover
out: stop
state: stopped GoingDown SlowingDown aux rising StopUp
initial : stopped
ext: stopped rising Value(mover)?2
ext: rising StopUp Value(mover)?0
ext: stopped aux Value(mover)?0
ext: GoingDown SlowingDown Value(mover)?0
int: aux stopped
int: SlowingDown stopped stop!1
int: StopUp stopped stop!1
ext: stopped GoingDown Value(mover)?1
stopped:00:00:1000:00 GoingDown:00:00:1000:00
SlowingDown:00:00:1:00 aux:00:00:00:00
rising:00:00:1000:00 StopUp:00:00:1:00

Figure 4: Elevator CD++ model.

Input and output ports are specified with the keywords in,

and out respectively. The State keyword defines the list of
states on the model, with initial as the initial state. External
transitions are marked by keyword ext. Internal transitions are
marked by keyword int. For both transitions we define source/
destination states, input ports/values for external transitions,
and output ports/values for internal transitions. The lifetimes
for each state are represented beside the state name.

Figure 5: Elevator Controller Model in DEVS Graphs notation

The DEVS Graph model of the elevator Controller is shown

in Figure 5. In this model, we abstract the behavior of the con-
troller to being in one of possible 6 states. These states
represent the elevator in regards to its movement direction and
its acceleration. The states are StdByStop that represents the
elevator in a complete stop and ready to move for any coming
requests, Moving in which the controller makes a decision to
move the elevator based on current floor and the button
pressed floor, StdByMov corresponds to the elevator moving
to the desired floor and the controller in that state receiving
sensor signals to decide when to stop the elevator, aux which
serve as a dummy state with internal transition that is executed
immediately after reaching that state, the state purpose is to
enable the test of the sensor value on the external transition to

it with the function equal(sensor,floor), Stopped which corres-
ponds to the controller deciding to send a signal to the elevator
to slow in preparation to stop, and Stopping corresponds to the
controller waiting for the elevator to get into complete stop
and send a stop signal to the controller.

 In this model, the controller would be in StdByStop state
waiting for a button request to move. Whenever it receives the
button request, it would trigger an external transition, and
compare the button floor to the cur_floor of the elevator.
Based on this comparison, the controller would determine the
direction in which the elevator should travel to, and stores this
info into the direction variable. The controller then reaches
Moving state that has a lifetime of zero time units. Therefore,
an output function is executed to send the direction informa-
tion through the port move to the elevator model, and an in-
stantaneous (with no time advancing in Moving state) internal
transition would be triggered to change the state into StdBy-
Mov state. The controller then decides to change to stopped
state if the sensor reading matches the desired floor; otherwise
it would loop between aux state and StdByMov states as shown
in the figure. The corresponding CD++ model textual specifi-
cation is shown in Figure 6.

[controller]
in: button stop sensor
out: move
var: floor cur_floor direction
state: stopping stdbyStop moving Stopped stdbyMov aux1
initial : stdbyStop
int: Stopped stopping move!0
ext: stopping stdbyStop Value(stop)?1
ext: stdbyStop moving Equal(button,cur_floor)?0 {floor =
 button; direction = compare(cur_floor,floor,2,0,1);}
int: moving stdbyMov move!direction
int: aux1 stdbyMov
ext: stdbyMov aux1 Equal(sensor,floor)?0 {cur_floor=sensor;}
ext: stdbyMov Stopped Equal(sensor,floor)?1 {cur_floor =

 sensor;}
stopping:00:00:00:00 stdbyStop:00:00:1000:00
moving:00:00:00:00 Stopped:00:00:00:00
stdbyMov:00:00:1000:00 aux1:00:00:00:00
floor:0 cur_floor:0 direction:0

Figure 6: Controller CD++ model.

Figure 7 shows the coupled model definition for the total
system composed of the Elevator and the Controller. In the
top component, these two components are defined, with input
ports to the top component button and sensor. These ports
are linked to the input ports of controller in lines 6 and 7.

1. components : elevator@ggad controller@ggad
2. in : button sensor
3. Link : move@controller move@elevator
4. Link : stop@elevator stop@controller
5. Link : button button@controller
6. Link : sensor sensor@controller
7. [elevator]
8. source : elevator.CDD
9. [controller]
10. source : controller.cdd
Figure 7: Elevator coupled model definition.

The coupling between the elevator and Controller atomic

models is shown on lines 4 and 5. Lines 8 to11 specifies the
files names for the atomic components. A DEVS graph
representing the coupled model is also shown in Figure 8. This
graph shows the atomic models of the elevator and controller,
input ports to the coupled model, and links between all com-
ponents.

Figure 8: The elevator-Controller coupled model graph

In Figure 9, we show a test case scenario for the elevator

top model is shown. This file would direct the simulation, and
its events would be sent to the model top component as de-
fined in Figure 7. This top component would direct the input to
the elevator controller as specified in the model definition. In
this file, third floor button is pressed at 5 time units. The
floorSensor sends signals to the elevator controller with floors
visited 1, 2, and 3 at times 10, 14, and 18 respectively. At time
27, first floor button is pressed and then floor sensor sends
signals at designated times as shown in the figure.

00:00:05:00 button3
00:00:10:00 floorSensor1
00:00:14:00 floorSensor2
00:00:18:00 floorSensor3
00:00:27:00 button1
00:00:32:00 floorSensor2
00:00:36:00 floorSensor1

Figure 9: Elevator Simulation event file

In Figure 10, simulation results are shown for the elevator
controller. Initially, the controller is at stdbystop state, with
all variables initialized to zeros. At 5 time units, the controller
receives the third floor button request as specified in the input
event file shown in Figure 9. This input causes the controller to
execute the external transition and change its state from
stdbystop to moving, with variable values as shown on the
third line from top. At time 5, output function executes sending
2 to move port, then internal transition executes to reach the
state stdbymov. The simulation continues with inputs at lines
marked with question mark “?”, Output with “O”, Internal
transitions with “I”, and External transitions with “E” letters.

C 00:00:00:000 : stdbystop , (direction=0) (floor=0)
 (cur_floor=0)
? 00:00:05:000 : button, 3
E 00:00:05:000 : stdbystop , moving(direction=2) (floor=3)
 (cur_floor=0)
O 00:00:05:000 : move, 2
I 00:00:05:000 : moving, stdbymov (direction=2) (floor=3)
 (cur_floor=0)
? 00:00:10:000 : floorSensor, 1
E 00:00:10:000 : stdbymov , aux1 (direction=2) (floor=3)

(cur_floor=1)
I 00:00:10:000 : aux1, stdbymov (direction=2) (floor=3)

(cur_floor=1)
? 00:00:14:000 : floorSensor, 2
E 00:00:14:000 : stdbymov , aux1 (direction=2) (floor=3)

(cur_floor=2)
I 00:00:14:000 : aux1 , stdbymov (direction=2) (floor=3)

(cur_floor=2)
? 00:00:18:000 : floorSensor, 3
E 00:00:18:000 : stdbymov , stopped (direction=2) (floor=3)

(cur_floor=3)
O 00:00:18:000 : move, 0
I 00:00:18:000 : stopped , stopping(direction=2) (floor=3)

(cur_floor=3)
? 00:00:19:000 : stop, 1
E 00:00:19:000 : stopping, stdbystop (direction=2) (floor=3)

(cur_floor=3)
? 00:00:27:000 : button, 1
E 00:00:27:000 : stdbystop , moving(direction=1) (floor=1)

(cur_floor=3)
O 00:00:27:000 : move, 1

I 00:00:27:000 : moving, stdbymov (direction=1) (floor=1)
(cur_floor=3)

? 00:00:32:000 : floorSensor, 2
E 00:00:32:000 : stdbymov , aux1 (direction=1) (floor=1)

(cur_floor=2)
I 00:00:32:000 : aux1 , stdbymov (direction=1) (floor=1)

(cur_floor=2)
? 00:00:36:000 : floorSensor, 1
E 00:00:36:000 : stdbymov , stopped (direction=1) (floor=1)

(cur_floor=1)
O 00:00:36:000 : move, 0
I 00:00:36:000 : stopped , stopping(direction=1) (floor=1)

(cur_floor=1)
? 00:00:37:000 : stop, 1
E 00:00:37:000 : stopping, stdbystop (direction=1) (floor=1)

(cur_floor=1)

Figure 10: Controller Simulation output.

Figure 11 shows the elevator simulation results with receiv-
ing and sending input/output from the controller.

The character in the first column in the simulation results
represents the following:

C: The initial state.
?: Input received by the elevator atomic model.
E: External transition executed by the elevator atomic

model, that is triggered by the reception of an event.
O: Output caused by invoking the output function.
I: Internal transition executed.
To describe the simulation results in Figure 11, the elevator

simulation starts at stopped state at time 00:00. At time 5:00
the elevator receives an input on move port with value 2. This
causes the elevator to change state to rising and wait there
for input 0 on move port. At time 18:00, the required input ar-
rives and the elevator changes to state StopUp, which its life-
time equals to 1 time units. This state represents the elevator
braking in the upward direction preparing to stop. At 19:00,
the elevator execute the output function and sends value of 1
on the output port stop, then changes to stopped state. The
simulation continues until the model reaches stopped state
again in last line.

C 00:00:00:000 : stopped ,
? 00:00:05:000 : move , 2
E 00:00:05:000 : stopped , rising
? 00:00:18:000 : move , 0
E 00:00:18:000 : rising , StopUp
O 00:00:19:000 : stop , 1
I 00:00:19:000 : StopUp , stopped
? 00:00:27:000 : move , 1
E 00:00:27:000 : stopped , dropping
? 00:00:36:000 : move , 0
E 00:00:36:000 : dropping , SlowDown
O 00:00:37:000 : stop , 1
I 00:00:37:000 : SlowDown , stopped

Figure 11: Elevator simulation results

B. Translating the Elevator DEVS Graph to Timed Automata

In order to formally verify the operation of our models and
hence our controller implementation on ECD++ platform, we
converted the previous DEVS models to equivalent TA that we
can check it with UPPAAL model checker. DEVS graphs no-
tation matches the definition on TCDEVS as defined in [11].
TCDEVS is a subset of DEVS formalism such that TCDEVS
models are deterministic. In that work, it shown that TCDEVS
models can be translated into equivalent TA models that main-
tain the same behavior and properties. By applying this trans-
lation method to our DEVS models, we obtain the TA models
shown in Figure 12 and Figure 13.

Figure 12 shows the elevator equivalent TA model with
clock constraints in locations that represent the time-life values
in corresponding DEVS model. Values sent through DEVS

ports are modeled with shared variables in UPPAAL, sending
and receiving messages in DEVS are modeled with channel
synchronization on the corresponding transitions in the TA
model. Each state in the DEVS model has a corresponding one
with the same name in the TA model. Only one clock variable
is sufficient for each TA to model an atomic DEVS graph
model. This clock is reset to zero whenever the automaton en-
ters a state. In Figure 12, x is the clock variable, and at each
state a constraint with x is formed to limit the time spend in
that state to the state lifetime as defined in the DEVS model.
An internal transition in DEVS model is represented with tran-
sitions in TA with output synchronization channel and assigns
the output value to a shared variable. External transitions are
represented with transition with input synchronization channel
and shared variable in its guard. For example the transition
from StopUp to Rising is synchronized on move channel,
and is enabled only if value of the shared variable direction
equals to zero.

Figure 12: Elevator TA model in UPPAAL.

Figure 13 shows the translated TA model from the DEVS

controller model. We used the same transformations as in the
elevator model, however in this one, we converted the DEVS
function compare() to an equivalent user defined function in
UPPAAL. This function is used on the corresponding transi-
tions in TA model as its equivalent in the DEVS model.

Figure 13: TA Controller model in UPPAAL.

In order to model DEVS states with zero lifetimes, i.e.
once this state is reached, its output function is executed, then
an internal transition happens out of that state, we used com-

mitted states as defined in UPPAAL timed automata. Time
does not pass in a committed state, and once we reach it in TA
model, a transition out of that state is enabled immediately.
Example of a committed state is Aux state in Figure 12.

In order to model input to the system as per the event file
shown for the DEVS model in Figure 9, we construct an auto-
maton that would send the button and sensor inputs to the con-
troller as in Figure 14 This automaton is necessary to make the
TA system under study a closed model. In order for model
checking techniques to be able to verify desired properties,
they must work on closed systems as model checking would
explore all possible system transitions to be able to determine
if the desired property is met or not. Therefore, a good model-
ing of the system environment is also necessary to completely
check all possible system behaviors for all expected environ-
ment inputs.

The environment modeled in Figure 14 is responsible for
sending button and sensor events to the controller. It starts at
S1 state, after staying in this state for 5 time units, it sets vari-
able button to 3, then synchronizes with controller TA on
channel buttonc. Again, waits in state S2 until its clock y
reaches 10 time units, sets sensor to 1, and synchronizes with
the controller on channel sensorc. This process continues for
the desired inputs sequences to the controller, and then resets
the clock and restarts again at S1.

Figure 14: Environment inputs (Button and Sensor).

After translating our DEVS model to an equivalent TA
model, we can use model checking to answer questions about
our DEVS model behavior that otherwise would have needed
to fully simulate all possible executions of the DEVS model to
get the answers.

Some of the important questions would be:
a. Does our DEVS model execution stop at one point without
being able to progress (having a deadlock)?
b. If no deadlocks are found in the DEVS model, is it always
guaranteed whenever a user pushes a floor button that the ele-
vator would reach that floor (normal operation as desired for
the elevator system)?
c. In case the elevator eventually reaches the requested floor, is
there a time upper bound between the request and the arrival

of the elevator that our model would always guarantee to hap-
pen?

In order to answer these questions, we formulated these
questions into formal queries to the TA model.

For the first question, we applied the UPPAAL verifier to
our model to check for any deadlocks that maybe present in
the elevator model To check for that failure, we had formu-
lated a simple query to UPPAAL model. It is expressed in
UPPAAL CTL language as:

A[] not deadlock
After running the checker, it shows that this property is sa-

tisfied, i.e. there is no deadlock in the DEVS model.
UPPAAL version 4.0.6 (rev. 2986), March 2007 --
server.
A[] not deadlock
Property is satisfied.

Figure 15: Elevator Verification Results in UPPAAL

To answer the second question, we need to check for the
liveness property, i.e. something would eventually happen. In
our case, for the proper operation of the controller within the
coupled system, we are interested to check if by pressing a cer-
tain floor button, the elevator would eventually reach that
floor. For example, if the user presses the 3rd floor button, the
elevator would eventually reach the 3rd floor. This property is
expressed in CTL as:
button == 3 --> ElevatorController.cur_floor == 3

i.e. whenever a user input for the third floor button hap-
pens, the cur_floor variable in the ElevatorController would
eventually reach that floor. This property was satisfied as well
in UPPAAL model checker for the given model. However, for
a query as:
button == 3 --> ElevatorController.cur_floor == 4

The property is not satisfied as we expect. By pressing 3rd
floor button, given the elevator initially stopped at 1st floor,
there is no way the elevator would reach the 4th floor.

To answer the third question, i.e. to know if the elevator
would reach the requested 3rd floor within some bounded time.
We extend the model for bounded time checking by adding
boolean variable b, and a global clock z as shown on the Ele-
vator model. The variable b would be set to true as long the
elevator starts traveling and until it reaches the Stopped state
again. Therefore, by checking the accumulated time while b is
true, it would give us the property we need to check. Then, the
property would be expressed with the following query:

A[] (b imply z < 27) which is satisfied. However,
the query A[] (b imply z < 26) is not satisfied.

This shows that the elevator would reach the 3rd floor after
requested there by no less than 26 time units, but guaranteed to
be there at 27 time units or more. More complex queries to
check for more properties could also be formulated and veri-
fied by UPPAAL in case that we have a more complex DEVS
model.

UPPAAL tool can also give a trace to help the designer get
an insight into the system working details. A trace is shown in
Figure 16. In this trace the system starts at initial states for all
three components, and then progresses. The composed system
state is shown as (Stopped,StdByStop,S1), and transi-
tions with synchronization is shown as but-
tonc:User_sensor_input --> ElevatorController.

That means that User_sensor_input synchronizes on but-
tonc channel with the ElevatorController. The new state
resulting from this transition is shown below the transition.

(Stopped,StdByStop,S1)
buttonc: User_sensor_input --> ElevatorController

(Stopped,Moving,S1)
move: ElevatorController --> Elevator

(Rising,StdByMov,S1)
sensorc: User_sensor_input --> ElevatorController

(Rising,Aux,S1)
ElevatorController (Rising,StdByMov,S3)
sensorc: User_sensor_input --> ElevatorController

(Rising,Aux1,S4)
ElevatorController (Rising,StdByMov,S4)
sensorc: User_sensor_input --> ElevatorController

(Rising,Aux1,S5)
ElevatorController (Rising,StdByMov,S5)
ElevatorController (Rising,Stopped,S5)
move: ElevatorController --> Elevator

(StopUp,Stopped,S5)
stop: Elevator --> ElevatorController

(Stopped,StdByStop,S5)
buttonc: User_sensor_input --> ElevatorController

(Stopped,Moving,S6)
move: ElevatorController --> Elevator

(GoingDown,StdByMov,S6)
sensorc: User_sensor_input --> ElevatorController
 (GoingDown,Aux1,S7)
ElevatorController (GoingDown,StdByMov,S7)
sensorc: User_sensor_input --> ElevatorController

(GoingDown,Aux1,S1)
ElevatorController (GoingDown,StdByMov,S1)
ElevatorController (GoingDown,Stopped,S1)
move: ElevatorController --> Elevator

(SlowingDown,Stopped,S1)
stop: Elevator --> ElevatorController

(Stopped,StdByStop,S1)
Figure 16: Elevator TA Simulation Results in UPPAAL.

This trace result shows the composed state of the model,
i.e. Elevator, Controller and User_sensor_input composed
state. The composed state is represented by a tuple (elevatorS-
tate, ControllerState, User_Sensor_inputState). Therefore, to
compare this UPPAAL trace to the previous DEVS simulation,
we compare the component trace with its corresponding DEVS
simulation output, as DEVS simulation output is stored for
each component individually. For example, the elevator UP-
PAAL trace results are in the left side of the tuple. By extract-
ing the elevator trace (Stopped, Rising, StopUp,
Stopped, GoingDown, SlowingDown, Stopped), we
find it matching the same corresponding states in the simula-
tion results shown in Figure 11 (stopped,rising, StopUp,
stopped, dropping, SlowDown, stopped. In both of
these traces, the elevator starts at its initial state Stopped, and
then rises to reach third floor as 3rd floor button is pressed, un-
til it stops there and stays in stopped state waiting for a next
request. When first floor button is pressed, the elevator moves
down until it reaches first floor and stops there in stopped
state, ready for next button request. The same comparison can
be done to the controller trace and to see it matches the DEVS
simulation as shown in Figure 10.

V. CONCLUSION AND FUTURE WORK.

We showed an effective methodology for Real-Time sys-
tems development using DEVS modeling and simulation tools
combined with the power of formal model checking tool as
timed Automata. In this methodology, we showed translation

of DEVS Graph to TA models details, and how to satisfy the
requirement to have a closed system be able to fully check
DEVS models.

In order to use Timed automata to verify DEVS models,
we need an accurate modeling of the environment in which the
modeled system would work and interact. This is not always a
straightforward task, as many assumptions may be needed to
model the environment. Future work would be needed to de-
duce patterns for modeling complex environment behaviors to
be able to completely check DEVS models.

Validating DEVS models formally with TA model check-
ing is paving the road for solving real-time predictability for
software systems. DEVS models are executable directly, with-
out the need for compilation, on eCD++ embedded platform in
a real-time. With this advantage, any formally validated DEVS
model would be guaranteed to execute exactly as predicted by
the validation, as no human intervention comes between the
checked model and the executable system. This advantage
would serve not only simulation community, but also real-time
software community as well, as DEVS can be used to model
controllers that would be simulated, formally validated and
then deployed on target platform.

Our approach to use model checking to verify DEVS mod-
els is limited with the same limitations imposed on TA model
checking, mainly because of state explosion problem. This
would limit the methodology to small and medium size DEVS
models. However, many real-life applications fall into these
boundaries.

 We see our methodology scaling up to include more com-
plex and general DEVS models that may represent a challenge
for model checking tools because of the state explosion prob-
lem. In this case, other decomposition and abstraction tech-
niques would be applied on the problem on hand. These tech-
niques would simplify the generated TA models to the point
that it is practical for model checking.

We intend to expand this methodology to enable more effi-
cient methodology for building DEVS components. In this ex-
panded methodology, the system analyst would concentrate on
system modeling tasks for the system on hand, for example the
elevator, and the surrounding environment. This model would
then be verified and validated by the designer to make sure it
captures all necessary system and environment details. The
methodology would use existing formal methods to generate
DEVS component (for example the elevator controller) that in-
teracts with the modeled system to achieve the desired overall
system properties, i.e. lack of deadlocks, safety, liveness, and
bounded-time-response. This would automate the building of a
considerable part of final coupled system, and eliminate the
need to formally check the generated component, as it would
be correct by the correct-by-construction technique.

REFERENCES

[1] M. J. Rehman, F. Jabeen, A. Bertolino, A. Polini. “Testing Soft-
ware Components for Integration: a Survey of Issues and Tech-
niques”. Software Testing, Verification and Reliability. 17(2): pp.
95–133. 2007.
[2] R. Gerlich, R. Gerlich, T. Boll. “Random Testing: From the Clas-
sical Approach to a Global View and Full Test Automation”. Proc. of
2nd international Workshop on Random Testing. Atlanta, GA, 2007.

[3] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareanu, W. Visser,
"Formal Software Analysis Emerging Trends in Software Model
Checking," In 2007 Future of Software Engineering. ICSE. Minne-
apolis, MN. 2007.
[4] D. Hemer and P.A. Lindsay. “Template-based construction of ve-
rified software”. IEE Proceedings-Software Engineering, Vol. 152,
No. 1, 2005.
[5] M.Baleani,A.Ferrari, L.Mangeruca, A.L.Sangiovanni-Vincentelli,
U.Freund, E.Schlenker, H.-J.Wolff. “Correct-by-Construction Trans-
formations across Design Environments for Model-Based Embedded
Software Development”. Design, Automation and Test in Europe
Conference and Exhibition. Munich, Germany. 2005.
[6] J. Huang, J. Voeten, H. Corporaal. “Predictable Real-time Soft-
ware Synthesis”. Real-time systems. (36) 3, pp.159-198, 2007.
[7] R. Alur and D. L. Dill. “A Theory of Timed Automata”. Journal
of Theoretical Computer Science, 126(2):183–235, 1994.
[8] B. Zeigler, T. Kim, H. Praehofer, Theory of Modeling and Simu-
lation. 2nd Edition. Academic Press. 2000.
[9] G. Behrmann, A. David, K. G. Larsen. “A Tutorial on Uppaal”.
In Proceedings of 4th International School on Formal Methods for
the Design of Computer, Communication, and Software Systems
(SFM-RT'04). Forli, Italy. LNCS 3185. 2004.
[10] J. Bengtsson , W. Yi. “Timed Automata: Semantics, Algorithms
and Tools”. In Lecture Notes on Concurrency and Petri Nets. W.
Reisig and G. Rozenberg (eds.), LNCS 3098, 2004.
[11] H. Dacharry, N. Giambiasi. “A Formal Verification Approach
for DEVS”. In Proceedings of Summer Computer Simulation Confe-
rence. San Diego, CA, 2007.
[12] G. Wainer. "CD++: a Toolkit to Define Discrete-Event Mod-
els". Software, Practice and Experience. Wiley. Vol. 32, No.3. pp.
1261-1306. November 2002.
[13] B. Zeigler, H. Song, T. Kim, H. Praehofer. "DEVS Framework
for Modelling, Simulation, Analysis, and Design of Hybrid Systems".
Proceedings of HSAC, LNCS, Vol. 999. Ithaca, NY. 1995.
[14] G. Christen, A. Dobniewski, G. Wainer. "Modeling State-Based
DEVS Models in CD++ ". In Proceedings of MGA, Advanced Simu-
lation Technologies Conference. Arlington, VA. U.S.A. 2004.
[15] Y. H. Yu, G. Wainer. “eCD++: An Engine for Executing DEVS
Models in Embedded Platforms”. In Proceedings of the 2007 Sum-
mer Computer Simulation Conference. San Diego, CA. 2007.
[16] R. Alur, D. L. Dill. “Automata for Modeling Real-Time Sys-
tems”. In Proc. of Int. Colloquium on Algorithms, Languages, and
Programming. Warwick University, UK. LNCS 443, 1990.
[17] J. E. Hopcroft, J. D. Ullman. Introduction of Automata Theory,
Languages, and Computation. Addison Wesley, 2001.
[18] L. Aceto, A. Bergueno, and K. G. Larsen. “Model Checking via
Reachability Testing for Timed Automata”. In Proceedings, Fourth
Workshop on Tools and Algorithms for the Construction and Analy-
sis of Systems, Lisbon, Portugal, LNCS 1384. 1998.
[19] R. Alur, C. Courcoubetis, and D. L. Dill. “Model-Checking for
Real-Time Systems”. In Proceedings, Fifth Annual IEEE Symposium
on Logic in Computer Science. Philadelphia, PA. 1990.
[20] R. Alur, C. Courcoubetis, d. Dill. “Model-Checking in Dense
Real-Time”. J. of Information and Computation, 104(1):2–34, 1993.
[21] T. A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. “Symbolic
Model Checking for Real-Time Systems”. Proc. of 7th Annual IEEE
Symposium on Logic in Computer Science, Santa Cruz, CA. 1992.
[22] T. A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. “Symbolic
Model Checking for Real-Time Systems”. Journal of Information
and Computation, 111(2):193–244, 1994.
[23] P. Bouyer and F. Laroussinie. “Model Checking Timed Auto-
mata”. Modeling and Verification of Real-Time Systems, pages 111-
140. ISTE Ltd. - John Wiley & Sons, Ltd., 2008.

