Verification of Real-Time DEVS Models

Hesham Saadawi *, Gabriel Wainer?

1School of Computer Science, Carleton Universitga®&a, ON. K1S 5B6, Canada, hsaadawi@connect.carleton.ca
2 Dept. of Systems and Computer Engineering, Carlefuimersity, Ottawa, ONK1S 5B6, Canada, gwainer@sce.carleton.ca

Discrete Event System Specification (DEVS) has been widely used to describe hierarchical models of discrete systems. DEVS has al-
so been used successfully to model with Real-Time constraints. In this paper, we introduce a methodology to verify Real-Time DEVS
models, and describe the methodology by using a case study of a DEVS model of an elevator system. Our methodology applies recent
advancesin theoretical model checking to DEVS models. The methodology also handles the cases wher e theor etical approach is not feas-
ible to cross the gap between abstract Timed Automata models and the complexity of the DEVS Real-time implementation by empirical
softwar e engineering methods. The case study is a system composed of an elevator along an elevator controller, and we show how the

methodology can be applied to areal caselikethisonein order to improvethe quality of such real-time applications.

Keywords: DEVS, Formal methods verification, Real-Time s@fte, Timed automata.

I. INTRODUCTION

Real-time Systems are very advanced computer sgstéth
hardware and software components, which must gatisfrd"

timing constraints. In these highly reactive systedesign de-

cisions can lead to catastrophic consequencesghant only
correctness is critical, but also the timelinesshef executing
tasks. For instance, if we consider an autopilotafo aircraft,
or a controller for an automated factory, we needbtain sys-
tem responses within well-defined deadlines. Altitowad-
vances in computing technology made possible ttdbegry
advanced RTS, the software development tasks ikifd of
systems is still time consuming, error prone, ardeesive,

through a series of transformations that are prdeemally to
preserve the desired properties in the originalehothe final
generated code, in this case, does not need ansesd¢evork
to apply formal analysis to prove its conformanzéhe origi-
nal model, thus reducing time to market and englilive aver-
age software engineer to produce formally corredtware
[4][5][6]. Our work is a step in this direction.

Formal specification techniques still have limitpdwer
when the complexity of the system scales up. lafstegstems
engineers have often relied on the use of modalhtfysimula-
tion (M&S) techniques in order to make system depeaient
tasks manageable. Construction of system modelstleeid

requiring a difficult and costly testing effort wino guarantee a@nalysis through simulation reduces both end caistsrisks,

for a bug-free software product.
Software correctness deals with the verificatiorthods to
ensure that a piece of software is doing what deisigned to

while enhancing system capabilities and improvimg quality
of the final products. M&S let users experimenthwitirtual”
systems, allowing them to explore changes, anddwsamic

do. There are many approaches been proposed addiruseconditions in a risk-free environment. This is zefus ap-

practice to do this task. Testing has been the maithodolo-
gy for verifying software components [1], but thechnique
has its own limitations. In order to guaranteesafe reliabili-

ty, we need to apply an exhaustive testing to thiéware

component, using all possible input combinationsniitech-
niques have been proposed to enable a practieahative to
exhaustive software testing [2]. However, we camu@rantee
a full coverage of all possible execution pathssaftware
component, thus leaving us with limited confiderineour

software correctness.

Formal software analysis use is growing as anratere,
as this technique allows full verification of softxe compo-
nents to be free of errors. In last decades, thedeniques
have matured to be used in some industrial capémitgoft-
ware and hardware correctness verification [3].eRédrends
in formal software analysis can be categorized thitee broad
types [3], namely Model Checking, Abstract Intetption,
and Deductive Methods. In this paper, we would cowuere
of the Model Checking approach.

proach, moreover considering that testing underahcperat-
ing conditions may be impractical and in some casp®ssi-
ble. Nevertheless, no practical, automatable ampreaists to
perform the transition that exists between the ringeand the
development phases, and this often results in madihcts
being abandoned, resulting in increased initial txahat
project managers usually try to avoid. Simultanou€l&S
frameworks are not as robust as their formal copatts are.
New theoretical advances in model checking alloargo-
teeing certain properties about models of suctesystusing a
formal approach. These techniques can be autontatéd-
prove the work of the software engineer. Timed ienatia (TA)
theory [7], in particular, has provided many preatiresults in
this area. However, there is still a gap betweempdel that is
checked as an abstract entity, and the actual ckoden a tar-
get platform. Errors could still creep into theditimplementa-
tion as the programmer translates requirementsucagptand
modeled in TA into code. TA and other formal methddve
showed promising results are still difficult to &ppvhen the

Further, approaches to use formal methods for soéw complexity of the system under development scapes u

correctness vary. There are the Correctness-bytCotisn
techniques in which to guarantee the final softwamglemen-
tation conformance to its requirements the impletatémn is
generated directly from the model. This generai®rdone

In this paper, we propose a methodology that wbalk a
higher correctness checking reliability of the attoode ex-
ecuting in the real-time system. This is achievgdnindel-
checking a DEVS model [8] that would run on theyérplat-

form, using a model-based approach in which thea aae GGGahicTuul Ciusuarios', ALEX\UBAY TESIS\cd ++isamplesierample papel
move simulated models to a target platform that @iecute | o rmr ot ol i -

them in real-time. In order to guarantee the cdness of the +I+I b | |

model, the methodology verifies DEVS models with TASE e
theory and tools. TA provides a solid theory angodthms TR

for model checking, and the many existing toolslengenting
these algorithms [9],[10]. DEVS models can be tiamsed to
semantically equivalent TA models maintaining itsgimal

structure and behaviour [11]. The verified DEVS misd

would then execute directly on a Real-time DEVSuator,

- 3

— sensor?]

eliminating the risk of introducing errors in thiedl system -
implementation on the target platform. [o
=] E’ Variables

5% counter

Il. BACKGROUND

DEVS was originally defined in the '70s as a dissevent
modeling specification mechanism. It was deriveahfrsys- |[{Feestes

tems theory, and it allows one to define hiera@hioodular | [Tieadanc [N
models that can be easily reused. A real systeneleddvith B o
DEVS is described as a composite of sub model$, e&ihem
being behavioural (atomic) or structural (couple@josure
under coupling allows coupled models to be integtab a This graphical notation has a textual representatisso-
model hierarchy [8]. Each model is defined by eetibase, in- cjated, used for creating simulation models thatcete in

puts, states, outputs, and functions to computenéix¢ states cp++. The internal transitions use the followingis:
and outputs. A DEVS atomic model is formally deised by:

Figure 1: An atomic model defined as a DEVS graph.

int: source destination [outport!value]*

M:<X1 SaYa 6in116exta)\vta> ({ (action;)* })
A DEVS coupled model is composed of several atanic Here,sourceanddestinationrepresent the initial and final
coupled sub models. They are formally defined as: states associated with the execution of the tiansftinction.
As the output function should also execute befbeeimternal
CM=<X,Y, D, M}, {l }, {Z }. select > transition, anoutputvalue can be associated with the internal

transition. One or moractionscan be triggered during the ex-

CD++ [12] allows defining models following theseesjfi- ecution of the transition (changing the values t#tes va-
cations. The tool is built as a hierarchy of modelach of riables). External transitions are defined as fedo
them related with a simulation entity. CD++ inclsdegraphi- o _
cal specification language to enhance interactiith stake- ©xt @ source ‘é;;}?'Egg} o ¢ { (action;)* })2
holders during system specification while having #dvan-
tage of allowing the modeler to think about thelpem in a In this case, when thexpressionis true (which includes
more abstract way. This notation (named DEVS Gragmis inputs arriving from input ports), the model withange from
lows defining atomic models’ behavior [13]. Each \EE statesourceto statedestination while also executing one or
graph is translated into an analytical definiti@EVS graphs more actions.

can be formally defined as [14]: eCD++ is an extension to CD++ that allows real-time ex-
GGAD =<Xwm, S, Yu, Oints » Oext, 4, D > ecution of DEVS models on a Single Board Compu&sQ)
[15]. It allows also interaction between the sinoitaand the
Xn={(p.v)| p JlPorts, v /X, } set of input ports; surrounding environment: inputs of eCD++ can beirazl by
Yw={(p.v)| p JOPorts v 7Y, } set of output ports ports connected to real input devices such as sgnsmers,
S = B x P(Vstates of the model, thermometers, or data collected from human intemactvhile
B = { b | b//Bubbles} set of model states. outputs can be sent through output ports conndotei@vices
V = { (v,n) | v JVariables, i/ R, } intermediate state va- such as motors, transducers, valves, etc.
riables of the model and their values. In our case study, the target system would be @b+eC

Here, dn, dxs A, andD have the same meaning as in tradiplatform executing on an embedded system. On éinget sys-
tional DEVS modelsEach model is defined by a unique identem, theElevatorControllercomponent, as defined later, has
tifier, and it can include a graphical specificaticGtates are its own set of timing constraints and would runtbe eCD++
represented by bubbles including an identifier arstate life- platform in real-time.
time. Figure 1shows a simple atomic model using this notation.

The model includes three states: A, B and C. Dotieels Il TIMED AUTOMATA

represent internal transitions, while full linesfide external Timed automata (TA) [16], [17] is an extension @ automa-
transitions. ta with timing information. Time is being tracken TA with

clocksthat hold real numbers and increment their valuigls w transition only while clockx value stays less than 10 time

time advance. Locations in TA could have constsaon the
time spent in that location, using expressions locks that
called invariants. Transitions from one locatioratmther are
guarded with clock constraints and synchronizatibannels.
Transitions could also have actions to reset valokeshe
clocks.

We introduce a formal definition of TA as defined[10]:

- A finite set of real-valued variables C rangeeiobyx,y,
etc.standing for clocks and a finite alphalietanged over by
a, b,etc.standing for actions.

- Clock Constraints:

A clock constraint is a conjunctive formula of aiornon-
straints of the fornx ~ nor x-y ~ nforx, yOO C , ~00 {<, >,5,

units, when a synchronization signal arrives omaledpress
States could also have clock constraints calhedriants In
this case, time is allowed to pass in a state whieclock val-
ues satisfy the invariant. Once the invariant isgatisfied, the
automaton would leave that state and enable aiticango
another state that clock values would satisfyritgiiant.

TA are suitable for modeling discrete systems weibimti-
nuous time. These systems could be composed ofsing
model, or multiple models that interact togethehe Tlatter
case is calledetworkof TA.

TA model checking for finite state machines [1819],
[20] has been extended by employing symbolic matieck-
ing techniques [21],[22] to build a finite reacHéhigraph

<>} and nO N, where N is the set of natural numbers. Clockith continuous time. However, state explosion peob still

constraints will be used as guards for timed autani(C)
denotes the set of clock constraints, ranged oyer b
(Timed Automaton) A timed automatod is a tuple
<N.,lo,E,I> where:
» N is afinite set of locations (or nodes),
* |oON is the initial location,

« E/JNxB(C)xXx2°xN is the set of edges
* |: N—B(C) assigns invariants to locations

limits the size of actual problems that can be ebMRecent
techniques to reduce this problem have been prdpease
these results were implemented in a number of tiylsSTA
model checking with success to check models ofessing
sizes. One of these tools is UPPAAL [9],[10] whichas ex-
tended TA with integer variables, urgent channet$ aser de-
fined functions. These extensions increase theiseness of
the model, but not the expressiveness power asrsho{23].
UPPAAL uses a subset of CTL (Computation Tree Lpffi2]

Where: Y is set of actions2° are selection of clocks to be to specify queries for properties in the TA model.

reset to zero.

We write | O #f1 - I" when(l,g,a,r,1")OE

The semantics of a timed automaton is defined taanresi-
tion system where a state or configuration consithe cur-
rent location and the current values of clocks.r&here two
types of transitions between states. The automaimy either
delay for some time (a delay transition), or follaw enabled
edge (an action transition).

(Operational Semantics) The semantics of a timed auto-
maton is a transition system (also known as a titreusition
system) where states are pairs <l,u> and transiiane de-
fined by the rules:

« (Lbu)¥ - (,u+d) ifudi(l) and(u+d)OI(l) fora
non-negative readd [0 R,

 (Lu)m - (I)it 108 ~ 1huDg,u' =[r - 0 Ju
andu'O1(1"

O

=10

ess?
press? s

x=)

chsCD press?

x==10
press?
J

brighth/

Figure 2: Timed Automaton [11].

An example of a timed automaton as given in [1&hswn
in Figure 2. The TA has three statésfis the initial state. The
transition outof dim has the a guai< 10which enables the

In our methodology, if UPPAAL (or any other model
checker) faces a problem of state explosion, an@nswers
can be obtained in finite time, the user can switchimulated
mode and exhaustively test the models using DEW&ilsr
tion. Subcomponents can be verified using TA madeck-
ers, improving the overall quality of the system.

IV. A CASESTUDY: AN ELEVATOR SYSTEM

We will show the effective use of TA model checkitegh-
niques for verification of DEVS Graphs models, tigh a
concrete example. This case study shows an Eleggtiem
composed of an elevator and a computer controlteteted in
DEVS Graphs notation with a model that abstracsefkevator
and controller behaviors. This abstraction is ne&gsto study
only properties of concern and to simplify the nmlodgtask.

A. DEVS Model definition and Simulation

StopUp 00:00:1:00
b
Value{mover) 4

rising 00:00:1000:00

AL00:00:00:00
(sanowjanien

™ Slogbown 00:00:1:00
Valua(mover)

Figure 3: Elevator Model in DEVS Graph notation.

The elevator model shown in Figure 3 representslitfier-
ent states of an elevator movement and transitmmtse/een

these states. This is an abstract model of theawlewhere

it with the functionequal(sensor,floor)Stoppedwvhich corres-

some details like door operation, floor display. étave been ponds to the controller deciding to send a signdhé elevator

ignored (as we only interested to control the dl@vanove-
ment with our controller). The elevator startsstoppedstate
and waits for controller commands to move (to $aasbutton
request from the user). The controller takes thasemns for

direction, start and stop of the motdfgyure 4shows the trans-

lation of this DEVS Graph model to a textual defom.

[el evator]

in: nover

out: stop

state: stopped Goi ngDown S| owi ngDown aux rising StopUp
initial : stopped

ext: stopped rising Val ue(nover) ?2

ext: rising StopUp Val ue(nover) ?0

ext: stopped aux Val ue(nover) ?0

ext: Goi ngDown S| owi ngDown Val ue(nover) ?0

int: aux stopped

Sl owi ngDown st opped stop!1

int: StopUp stopped stop!1l

ext: stopped Goi ngDown Val ue(nover) ?1

st opped: 00: 00: 1000: 00 Goi ngDown: 00: 00: 1000: 00

Sl owi ngDown: 00: 00: 1: 00 aux: 00: 00: 00: 00
rising:00:00:1000: 00 St opUp: 00: 00: 1: 00

Figure 4: Elevator CD++ model.

int:

Input and output ports are specified with the kenggan,
and out respectively. TheState keyword defines the list of
states on the model, witinitial as the initial state. External

to slow in preparation to stop, aftoppingcorresponds to the
controller waiting for the elevator to get into qolete stop
and send a stop signal to the controller.

In this model, the controller would be 8tdByStopstate
waiting for a button request to move. Wheneveedeives the
button request, it would trigger an external transitiamd
compare the button floor to theur_floor of the elevator.
Based on this comparison, the controller would mieitee the
direction in which the elevator should travel todastores this
info into the direction variable. The controller then reaches
Moving state that has a lifetime of zero time units. Effene,
an output function is executed to send the diractidorma-
tion through the porioveto the elevator model, and an in-
stantaneous (with no time advancingMioving state) internal
transition would be triggered to change the state $tdBy-
Mov state. The controller then decides to changstdpped
state if the sensor reading matches the desired, fitherwise
it would loop betweemux state andStdByMovstates as shown

in the figure. The corresponding CD++ model texsecifi-
cation is shown in Figure 6.

[controller]
i

" .. n: button stop sensor
transitions are marked by keywoedt. Internal transitions are out: nove

marked by keywordnt. For both transitions we define source
destination states, input ports/values for extetrasitions,
and output ports/values for internal transitionke Tifetimes
for each state are represented beside the stat nam

i
stopring 00 00:00:00 B i

Stopped

lep C0;C0:1000:03

o schid

dne)

e’

Lxd 00:00:0C:00

/ool

e

'
g 00:00 00:00
Figure 5: Elevator Controller Model in DEVS Grapiatation

The DEVS Graph model of the elevator Controlleshiswn
in Figure 5. In this model, we abstract the behasfahe con-
troller to being in one of possible 6 states. Thetmes
represent the elevator in regards to its movemieattibn and
its acceleration. The states é@&lByStophat represents the
elevator in a complete stop and ready to move figrcmming
requestsMoving in which the controller makes a decision to
move the elevator based on current floor and thgobu
pressed floorStdByMov correspond® the elevator moving
to the desired floor and the controller in thatesteeceiving
sensor signals to decide when to stop the elevatorwhich
serve as a dummy state with internal transition iaxecuted

ext:
ext:

st oppi ng: 00: 00: 00: 00
nmovi ng: 00: 00: 00: 00

st dbyMov: 00: 00: 1000: 00
floor:0

}/ar: floor cur_floor direction
st ate:

initial :
int:
ext:
ext:

st oppi ng stdbyStop noving Stopped stdbyMyv auxl
st dbySt op

St opped st oppi ng nove! 0
st oppi ng stdbyStop Val ue(stop)?1
st dbySt op nmovi ng Equal (button, cur_floor)?0 {fl oor

button; direction = conmpare(cur_floor,floor,2,0,1);}
novi ng st dbyMov nove! direction
auxl st dbyMyv

st dbyMv auxl Equal (sensor, floor)?0 {cur_fl oor=sensor;}

st dbyMv Stopped Equal (sensor, floor)?1 {cur_floor =
sensor; }

nt:
nt:

st dby St op: 00: 00: 1000: 00
St opped: 00: 00: 00: 00
aux1: 00: 00: 00: 00

cur_floor:0 direction: 0

Figure 6: Controller CD++ model.

Figure 7 shows the coupled model definition for toel

system composed of the Elevator and the Contralfethe

t op component, these two components are defined, imytint

ports to the top componehtt t on andsensor . These ports
arelinkedto the input ports of controller in lines 6 and 7.

conponents : el evat or @gad control | er @gad
in: button sensor

1.

2.

3. Link : nmove@ontroller nove@l evator
4. Link : stop@l evator stop@ontroller
5. Link : button button@ontroller

6. Link : sensor sensor @ontroller

7. [elevator]

8. source : elevator.CDD

9. [controller]

10. source : controller.cdd

Figure 7: Elevator coupled model definition.

The coupling between the elevator and Controllemt

models is shown on lines 4 and 5. Lines 8 tollifpedhe
files names for the atomic components. A DEVS graph
representing the coupled model is also shown iarEi@. This
graph shows the atomic models of the elevator amtraller,
input ports to the coupled model, and links betwakrtom-

immediately after reaching that stathe state purpose is to ponents.

enable the test of the sensor value on the extéanadition to

ontroller@controller eleyator@hlotDefined
(do3s) <- ()

(move) -> ()

Figure 8: The elevator-Controller coupled modepgra

In Figure 9 we show a test case scenario for the elevator

top model is shown. This file would direct the siation, and
its events would be sent to the model top compoasnte-

| 00:00:27:000 : noving, stdbynov (direction=1) (floor=1)
(cur_floor=3)

? 00:00:32: 000 : floorSensor, 2

E 00: 00: 32: 000 : stdbymov , auxl (direction=1) (floor=1)
(cur_floor=2)

I 00:00:32:000 : auxl , stdbynmov (direction=1) (floor=1)
(cur_floor=2)

? 00:00:36:000 : floorSensor, 1

E 00: 00: 36: 000 : stdbymov , stopped (direction=1) (floor=1)
(cur_floor=1)

O 00: 00: 36: 000 : nove, O

I 00:00:36:000 : stopped , stopping(direction=1) (floor=1)
(cur_floor=1)

? 00:00:37: 000 : stop, 1

E 00: 00: 37: 000 : stopping, stdbystop (direction=1) (floor=1)

(cur_floor=1)
Figure 10: Controller Simulation output.

Figure 11shows the elevator simulation results with receiv-

the elevator controller as specified in the modsfinition. In
this file, third floor button is pressed at 5 timeits. The
floorSensor sends signals to the elevator contralith floors
visited 1, 2, and 3 at times 10, 14, and 18 reggdygt At time
27, first floor button is pressed and then floonss® sends
signals at designated times as shown in the figure.

1 05:
1 10:
1 14:
1 18:
1 27:

butt on3

fl oor Sensor 1
f1 oor Sensor 2
f1 oor Sensor 3
butt onl

1 32: f1 oor Sensor 2
: 36: fl oor Sensor 1

Figure 9: Elevator Simulation event file

In Figure 10, simulation results are shown for ¢tevator
controller. Initially, the controller is aft dbyst op state, with
all variables initialized to zeros. At 5 time unitee controller
receives the third floor button request as spetifiethe input
event file shown irFigure 9 This input causes the controller to
execute the external transition and change itse stadim
st dbyst op to novi ng, with variable values as shown on th
third line from top. At time 5, output function exxges sending
2 to nove port, then internal transition executes to redwh t

statest dbynov. The simulation continues with inputs at lines

marked with question mark “?”, Output with “O”, &rhal
transitions with “I”, and External transitions witR” letters.

C 00: 00: 00: 000 : stdbystop , (direction=0) (floor=0)
(cur _f1oor=0)

? 00: 00: 05: 000 : button, 3

E 00: 00: 05: 000 : stdbystop , noving(direction=2) (floor=3)

(cur _fl oor=0)

O 00: 00: 05: 000 : nove, 2

I 00:00:05:000 : noving, stdbymov (direction=2) (floor=3)
(cur_f1oor=0)

? 00:00:10: 000 : floorSensor, 1

E 00: 00: 10: 000 : stdbymov , auxl (direction=2) (floor=3)
(cur_floor=1)

I 00:00:10: 000 : auxl, stdbynov (direction=2) (floor=3)
(cur_floor=1)

? 00:00: 14: 000 : floorSensor, 2

E 00: 00: 14: 000 : stdbymov , auxl (direction=2) (floor=3)
(cur_floor=2)

| 00:00:14:000 : auxl , stdbynov (direction=2) (floor=3)
(cur_floor=2)

? 00:00:18:000 : floorSensor, 3

E 00: 00: 18: 000 : stdbynov , stopped (direction=2) (floor=3)
(cur _floor=3)

O 00: 00:18: 000 : nove, O

| 00:00:18:000 : stopped , stopping(direction=2) (floor=3)
(cur_floor=3)

? 00:00:19:000 : stop, 1

E 00: 00: 19: 000 : stopping, stdbystop (direction=2) (floor=3)
(cur _floor=3)

? 00:00:27:000 : button, 1

E 00: 00: 27: 000 : stdbystop , noving(direction=1) (floor=1)
(cur_floor=3)

O 00: 00: 27: 000 : nove, 1

The character in the first column in the simulatiesults
represents the following:

C: The initial state.

?: Input received by the elevator atomic model.

E: External transition executed by the elevator atomi
model, that is triggered by the reception of améve

O Output caused by invoking the output function.

I - Internal transition executed.

To describe the simulation resultsFigure 11 the elevator
simulation starts att opped state at time 00:00. At time 5:00
the elevator receives an input@sve port with value 2. This
causes the elevator to change statd t ng and wait there
for input 0 onmove port. At time 18:00, the required input ar-
rives and the elevator changes to sgatepUp, which its life-
time equals to 1 time units. This state represine®levator
braking in the upward direction preparing to st&4p19:00,
the elevator execute the output function and sealle of 1
on the output portt op, then changes &t opped state. The

eSimulation continues until the model reachespped state

again in last line.

C 00: 00: 00: 000 : stopped ,

? 00:00:05:000 : nmove , 2

E 00: 00: 05: 000 : stopped , rising

? 00:00:18:000 : move , O

E 00:00:18:000 : rising , StopUp

O 00: 00:19: 000 : stop , 1

I 00:00:19:000 : StopUp , stopped
? 00:00:27: 000 : nove ,

E 00: 00: 27: 000 : stopped , dropping
? 00: 00: 36: 000 : nove ,

E 00: 00: 36: 000 : dropping , Sl owbown
O 00: 00: 37: 000 : stop , 1

I 00:00:37: 000 : Slowbown , stopped

Figure 11: Elevator simulation results

B. Translating the Elevator DEVS Graph to Timed Auttana

In order to formally verify the operation of our dels and
hence our controller implementation on ECD++ platfowe
converted the previous DEVS models to equivalentiat we
can check it with UPPAAL model checker. DEVS grapbs
tation matches the definition on TCDEVS as defimefd.1].
TCDEVS is a subset of DEVS formalism such that TOSE
models are deterministic. In that work, it showatthCDEVS
models can be translated into equivalent TA mothels main-
tain the same behavior and properties. By appliirgtrans-
lation method to our DEVS models, we obtain theriéddels
shown inFigure 12andFigure 13

Figure 12 shows the elevator equivalent TA modehwi
clock constraints in locations that represent itneife values
in corresponding DEVS model. Values sent throughVvBE

ports are modeled with shared variables in UPPAgdnding mitted states as defined in UPPAAL timed automata. Time
and receiving messages in DEVS are modeled witimreila does not pass in a committed state, and once wé et TA
synchronization on the corresponding transitiongh@ TA model, a transition out of that state is enablechédiately.
model. Each state in the DEVS model has a correpgrone Example of a committed state is Aux state in Figile

with the same name in the TA model. Only one cleakable In order to model input to the system as per thenefile

is sufficient for each TA to model an atomic DEV&gh shown for the DEVS model iRigure 9 we construct an auto-
model. This clock is reset to zero whenever theraaton en- maton that would send the button and sensor irtputse con-
ters a state. In Figure 18,is the clock variable, and at eachtroller as inFigure 14This automaton is necessary to make the
state a constraint witk is formed to limit the time spend in TA system under study a closed model. In ordernfiodel
that state to the state lifetime as defined inMf&/S model. checking techniques to be able to verify desiredperties,

An internal transition in DEVS model is representdgth tran- they must work on closed systems as model checkingd
sitions in TA with output synchronization channataassigns explore all possible system transitions to be abldetermine
the output value to a shared variable. Externaisitins are if the desired property is met or not. Thereforgpoad model-
represented with transition with input synchronimatchannel ing of the system environment is also necessapptopletely
and shared variable in its guard. For example thesition check all possible system behaviors for all expkemsviron-
from St opUp to Ri si ng is synchronized omove channel, ment inputs.

and is enabled only if value of the shared variableect i on The environment modeled iRigure 14is responsible for
equals to zero. sending button and sensor events to the contrdtlstarts at
Rising StapUp S1 state, after staying in this state for 5 time syniit sets vari-

able butt on to 3, then synchronizes with controller TA on
channelbut t onc. Again, waits in stateS2 until its clocky
reaches 10 time units, satsnsor to 1, and synchronizes with
the controller on channeknsor c. This process continues for
the desired inputs sequences to the controller tlagnl resets
the clock and restarts again at S1.

51

e SlowingDawn
mowe

=0,
stopvalue: =1 w<|

Figure 12: Elevator TA model in UPPAAL.

Figure 13shows the translated TA model from the DEVS
controller model. We used the same transformatani the
elevator model, however in this one, we converted REVS PaRRR=
function compare()to an equivalent user defined function in
UPPAAL. This function is used on the correspondiransi- Figure 14: Environment inputs (Button and Sensor).
tions in TA model as its equivalent in the DEVS mabd

Stopping

After translating our DEVS model to an equivalerid T
model, we can use model checking to answer questbout
our DEVS model behavior that otherwise would hageded
to fully simulate all possible executions of the \EEmodel to
get the answers.

Some of the important questions would be:

a. Does our DEVS model execution stop at one paitttout
being able to progress (having a deadlock)?

b. If no deadlocks are found in the DEVS modeit slways
guaranteed whenever a user pushes a floor buttrittd ele-
vator would reach that floor (normal operation asiced for
the elevator system)?

c. In case the elevator eventually reaches theested floor, is
there a time upper bound between the request andrtival

Stopped

Figure 13: TA Controller model in UPPAAL.

In order to model DEVS states with zero lifetimes,
once this state is reached, its output functioexiscuted, then
an internal transition happens out of that state,usedcom-

of the elevator that our model would always guararib hap-
pen?

In order to answer these questions, we formulabedet
questions into formal queries to the TA model.

For the first question, we applied the UPPAAL \erifto
our model to check for any deadlocks that maybeeurein
the elevator model To check for that failure, wel farmu-
lated a simple query to UPPAAL model. It is expegksn

UPPAAL CTL language as:
A[] not deadl ock

After running the checker, it shows that this pmyés sa-

tisfied, i.e. there is no deadlock in the DEVS mode
UPPAAL version 4.0.6 (rev. 2986), March 2007 --
server.
Al] not deadl ock
Property is satisfied.

Figure 15: Elevator Verification Results in UPPAAL

To answer the second question, we need to chec¢hkdor
livenessproperty, i.e. something wouklentuallyhappen. In
our case, for the proper operation of the contralli¢hin the
coupled system, we are interested to check if bgging a cer-
tain floor button, the elevator wouventuallyreach that
floor. For example, if the user presses tidl8or button, the
elevator wouldeventuallyreach the 3rd floor. This property is

expressed in CTL as:
button == 3 --> ElevatorController.cur_floor == 3

i.e. whenever a user input for the third floor bathap-
pens, the cur_floor variable in the ElevatorComgrolvould
eventually reach that floor. This property wassfed as well
in UPPAAL model checker for the given model. Howeer
a query as:

button == 3 --> ElevatorController.cur_floor == 4

The property is not satisfied as we expect. By $ings3’
floor button, given the elevator initially stoppati?™ floor,
there is no way the elevator would reach tfidldor.

To answer the third question, i.e. to know if tHevator
would reach the requestef 8oor within some bounded time.
We extend the model for bounded time checking bgirad
boolean variable b, and a global clock z as showthe Ele-
vator model. The variable b would be set to trudoag the
elevator starts traveling and until it reaches $Stiepped state
again. Therefore, by checking the accumulated tifie b is
true, it would give us the property we need to &dten, the
property would be expressed with the following quer

Al (b inmply z < 27) which is satisfied. However,
the queryAl] (b inply z < 26) is not satisfied.

This shows that the elevator would reach tidlGor after
requested there by no less than 26 time unitsybartanteed to
be there at 27 time units or more. More complexriggeto
check for more properties could also be formulaad veri-
fied by UPPAAL in case that we have a more com&ys
model.

UPPAAL tool can also give a trace to help the desigyet
an insight into the system working details. A tris&shown in
Figure 16 In this trace the system starts at initial stditesall
three components, and then progresses. The compgskin
state is shown a6St opped, St dBySt op, S1), and transi-
tions with synchronization is shown asbut-
tonc: User _sensor _i nput --> El evatorController.

That means thatiser _sensor _i nput synchronizes obut -
t onc channel with theél evat or Cont rol | er. The new state
resulting from this transition is shown below thensition.

('St opped, St dBySt op, S1)

buttonc: User_sensor_input --> ElevatorController
(St opped, Movi ng, S1)
nmove: El evatorController --> El evator

(Ri si ng, St dByMyv, S1)
sensorc: User_sensor_i nput --> El evatorController
(Ri sing, Aux, S1)
El evator Control l er (Rising, StdByMv, S3)
sensorc: User_sensor_input --> El evatorController
(Ri si ng, Aux1, $4)
El evat or Control |l er (Rising, StdByMv, S4)
sensorc: User_sensor_input --> ElevatorController
(Ri sing, Aux1, S5)
El evat or Control | er (R sing, StdByMv, S5)
El evat or Control | er (Rising, Stopped, S5)
nmove: El evatorController --> El evator
('St opUp, St opped, S5)
stop: Elevator --> El evatorController
('St opped, St dBySt op, S5)
buttonc: User_sensor_input --> ElevatorController
(St opped, Movi ng, S6)
nmove: El evatorController --> El evator
(Goi ngDown, St dByMv, S6)
sensorc: User_sensor_input --> ElevatorController
(Goi ngDown, Aux1, S7)
El evat or Control | er (Goi ngDown, St dByMov, S7)
sensorc: User_sensor_input --> ElevatorController
(Goi ngDown, Aux1, S1)
El evat or Control | er (Goi ngDown, St dByMv, S1)
El evat or Control | er (Goi ngDown, St opped, S1)
nmove: El evatorController --> El evator
('Sl owi ngDown, St opped, S1)
stop: Elevator --> El evatorController
(St opped, St dBySt op, S1)
Figure 16: Elevator TA Simulation Results in UPPAAL

This trace result shows the composed state of thdem
i.e. Elevator, Controller and User_sensor_input posed
state. The composed state is represented by a(lpleatorS-
tate, ControllerState, User_Sensor_inputState).refbee, to
compare this UPPAAL trace to the previous DEVS &ation,
we compare the component trace with its correspgnBEVS
simulation output, as DEVS simulation output isrstb for
each component individually. For example, the dlmvaP-
PAAL trace results are in the left side of the &uBy extract-
ing the elevator trace Stopped, Rising, StopUp,
St opped, Goi ngDown, Sl owi ngDown, St opped), we
find it matching the same corresponding statedqénsimula-
tion results shown ifigure 11(st opped, ri si ng, St opUp,
st opped, dropping, Sl owDown, stopped. In both of
these traces, the elevator starts at its initatest opped, and
then rises to reach third floor a& Boor button is pressed, un-
til it stops there and stays # opped state waiting for a next
request. When first floor button is pressed, tlevatior moves
down until it reaches first floor and stops themest opped
state, ready for next button request. The same adsgm can
be done to the controller trace and to see it nestthe DEVS
simulation as shown iRigure 10

V. CONCLUSION AND FUTURE WORK

We showed an effective methodology for Real-Time- sy
tems development using DEVS modeling and simulatats
combined with the power of formal model checkingltas
timed Automata. In this methodology, we showed staiion

of DEVS Graph to TA models details, and how tosgatthe
requirement to have a closed system be able tg @llkeck
DEVS models.

In order to use Timed automata to verify DEVS megdel
we need an accurate modeling of the environmewhioh the
modeled system would work and interact. This isalatays a
straightforward task, as many assumptions may leelet to
model the environment. Future work would be needede-
duce patterns for modeling complex environment biens to
be able to completely check DEVS models.

Validating DEVS models formally with TA model check
ing is paving the road for solving real-time prediility for
software systems. DEVS models are executable Hiredth-
out the need for compilation, on eCD++ embeddetfgrta in
a real-time. With this advantage, any formally dated DEVS
model would be guaranteed to execute exactly atiqiesl by
the validation, as no human intervention comes &éetwmhe
checked model and the executable system. This &a@&n
would serve not only simulation community, but ateal-time
software community as well, as DEVS can be usechddel
controllers that would be simulated, formally valiedd and
then deployed on target platform.

Our approach to use model checking to verify DEM&Im
els is limited with the same limitations imposed & model
checking, mainly because of state explosion probl&his
would limit the methodology to small and mediumesREVS
models. However, many real-life applications faitoi these
boundaries.

We see our methodology scaling up to include noore-
plex and general DEVS models that may represehtibenge
for model checking tools because of the state exmoprob-
lem. In this case, other decomposition and abstradech-
niques would be applied on the problem on handsé ech-
niques would simplify the generated TA models te foint
that it is practical for model checking.

We intend to expand this methodology to enable reffie
cient methodology for building DEVS componentsthis ex-
panded methodology, the system analyst would cdrateron
system modeling tasks for the system on hand,xamele the
elevator, and the surrounding environment. This eheguld
then be verified and validated by the designer &kersure it
captures all necessary system and environmentlgiefdie
methodology would use existing formal methods toegate
DEVS component (for example the elevator contrpHeat in-
teracts with the modeled system to achieve theetksiverall
system properties, i.e. lack of deadlocks, safetgness, and
bounded-time-response. This would automate thelibgilof a
considerable part of final coupled system, and iakte the
need to formally check the generated componenit, \&suld
be correct by the correct-by-construction technique

REFERENCES

[1] M. J. Rehman, F. Jabeen, A. Bertolino, A. Polifiesting Soft-
ware Components for Integration: a Survey of Issaed Tech-
niques”. Software Testing, Verification and Reliability7(2): pp.
95-133. 2007.

[2] R. Gerlich, R. Gerlich, T. Boll. “Random Testingoi the Clas-
sical Approach to a Global View and Full Test Ausdion”. Proc. of
2nd international Workshop on Random Testidanta, GA, 2007.

[3] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareai Visser,
"Formal Software Analysis Emerging Trends in SofevaModel
Checking,"In 2007 Future of Software Engineerin@SE. Minne-
apolis, MN 2007.

[4] D. Hemer and P.A. Lindsay. “Template-based conttn®f ve-
rified software”.IEE Proceedings-Software Engineerjngol. 152,
No. 1, 2005.

[5] M.Baleani,A.Ferrari, L.Mangeruca, A.L.Sangiovanrigentelli,
U.Freund, E.Schlenker, H.-J.Wolff. “Correct-by-Ctrastion Trans-
formations across Design Environments for ModeleBiaEmbedded
Software Development’Design, Automation and Test in Europe
Conference and ExhibitioMunich, Germany. 2005.

[6] J. Huang, J. Voeten, H. Corporaal. “Predictablelfieee Soft-
ware Synthesis'Real-time system§36) 3, pp.159-198, 2007.

[7] R. Alur and D. L. Dill. “A Theory of Timed AutomataJournal
of Theoretical Computer Sciend6(2):183-235, 1994.

[8] B. Zeigler, T. Kim, H. Praehofef;heory of Modeling and Simu-
lation. 2" Edition. Academic Press. 2000.

[9] G. Behrmann, A. David, K. G. Larsen. “A Tutorial &ippaal”.
In Proceedings of 4th International School on Folrvethods for
the Design of Computer, Communication, and Softwaystems
(SFM-RT'04) Forli, Italy. LNCS 3185. 2004.

[10] J. Bengtsson , W. Yi. “Timed Automata: Semanticlgofithms
and Tool8. In Lecture Notes on Concurrency and Petri Nets. W.
Reisig and G. Rozenberg (ed&)NCS 3098, 2004.

[11] H. Dacharry, N. Giambiasi. “A Formal Verificationpfiroach
for DEVS”. In Proceedings of Summer Computer Simulation Confe-
rence San Diego, CA, 2007.

[12] G. Wainer. "CD++: a Toolkit to Define Discrete-EveMod-
els". Software, Practice and Experiencé/iley. Vol. 32, No.3. pp.
1261-1306. November 2002.

[13] B. Zeigler, H. Song, T. Kim, H. Praehofer. "DEVSaRrework
for Modelling, Simulation, Analysis, and Designtéfbrid Systems".
Proceedings of HSACNCS, Vol. 999.Ithaca, NY. 1995.

[14] G. Christen, A. Dobniewski, G. Wainer. "Modelingaft-Based
DEVS Models in CD++ "In Proceedings of MGAAdvanced Simu-
lation Technologies Conference. Arlington, VA. LAS2004.

[15] Y. H. Yu, G. Wainer. “eCD++: An Engine for ExecWjibEVS
Models in Embedded Platforms”. Proceedings of the 2007 Sum-
mer Computer Simulation Conferen&an Diego, CA. 2007.

[16] R. Alur, D. L. Dill. “Automata for Modeling Real-fie Sys-
tems”. In Proc. of Int. Colloquium on Algorithms, Languagend
Programming Warwick University, UK. LNCS 443, 1990.

[17] J. E. Hopcroft, J. D. Ullmarintroduction of Automata Theory,
Languages, and ComputatioAddison Wesley, 2001.

[18] L. Aceto, A. Bergueno, and K. G. Larsen. “Model Ckiag via
Reachability Testing for Timed Automata”. Rroceedings, Fourth
Workshop on Tools and Algorithms for the Constarctind Analy-
sis of Systemd&isbon, Portugal, LNCS 1384. 1998.

[19] R. Alur, C. Courcoubetis, and D. L. Dill. “Model-@bking for
Real-Time Systems”. IRroceedings, Fifth Annual IEEE Symposium
on Logic in Computer Sciendehiladelphia, PA. 1990.

[20] R. Alur, C. Courcoubetis, d. Dill. “Model-Checkirig Dense
Real-Time".J. of Information and Computatip04(1):2—-34, 1993.
[21] T. A. Henzinger, X. Nicollin, J. Sifakis, S. Yovin&Symbolic
Model Checking for Real-Time System#roc. of #' Annual IEEE
Symposium on Logic in Computer Scier@anta Cruz, CA. 1992.
[22] T. A. Henzinger, X. Nicollin, J. Sifakis, S. Yovin&ymbolic
Model Checking for Real-Time SystemsJournal of Information
and Computation111(2):193-244, 1994.

[23] P. Bouyer and F. Laroussinie. “Model Checking Tinfado-
mata”. Modeling and Verification of Real-Time Systepages 111-
140. ISTE Ltd. - John Wiley & Sons, Ltd., 2008.

